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1. Kinetic analysis of CO Oxidation 

The well accepted reaction mechanism for CO oxidation (
2 2

1
CO( ) O ( ) CO ( )

2
g g g→+ ← ) is 

given below: 
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According to the site balance, we have 
2CO O CO * 1θ θ θ θ+ + + = . 

If we assume step (3) is the rate-determining step (RDS), then the forward reaction of the 

other three elementary steps are in pseudo-equilibrium with the reverse on and we have 
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Thus, the free site coverage can be obtained 
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Since the overall reaction rate can be expressed as 

CO 3 CO* O*r k θ θ= ⋅ ⋅  

we have 

( ) ( )
2

0.5

CO 3 1 CO( ) * 2 O ( ) *g gr k K P K Pθ θ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

At very low reactant pressures, we can assume to a first approximation that *θ ≈1, and, 

consequently, 
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That is,  
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Thus, the apparent activation energy and pre-exponential factor are 
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respectively, where B
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It follows that the apparent entropy of activation is the entropy change from the gaseous 

reactants of CO and O2 to the rate-determining transition state: 
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2. Experimentally derived apparent activation energy, pre-exponential factor, and 

apparent entropy of activation  

In Figure 8, the least squares fitted lines for the Pt/p-CNF and Pt/f-CNF are 

1
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= − +  

and  
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respectively. The slope of fitted line is 
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−
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, 

where appE  is the apparent activation energy, A pre-exponential factor, PCO and PO2 the 

partial pressures of CO and O2, M the atomic weight of Pt, and D the dispersion of Pt catalyst, 

respectively. Then, the apparent activation energies ( appE ) are calculated from the slopes of 

fitted lines, and the pre-exponential factors (A) are calculated from the intercepts, as given in 
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Table S1. The apparent entropy of activation ( appS∆ ) is calculated from the pre-exponential 

factor (A), where exp
appB

Sk T
A

h R

∆ 
= ⋅  

 
. 

Table S1. Apparent activation energy ( appE ), pre-exponential factor (A), and apparent entropy of 

activation ( appS∆ ) for CO preferential oxidation on the Pt/p-CNF and Pt/f-CNF 

 A appS∆  (J/mol⋅K) appE  (kJ/mol) 

Pt/p-CNF 8.74×10
8
 -75.0 49.4 

Pt/f-CNF 4.34×10
4
 -154.6 23.9 

 


