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COMPUTATIONAL DETAILS

We performed molecular dynamics (MD) simulations to produce equilibrium config-

urations of supercritical fluid (SCF). MD simulations were performed by Large-scale

Atomic/Molecular Massively Parallel Simulator (LAMMPS) [1], and Voronoi tessellation of

MD trajectory was performed by Voro++ library [2].

The fluid was modeled by a 12− 6 Lennard-Jones (LJ) potential:

φ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (1)

The LJ parameter σ and ε provide units for length and energy, respectively. The poten-

tial was truncated at the cutoff distance of rcut = 3.0σ, and standard tail correction was

applied to include long-range contributions to the LJ energy. All analyses in the main text

were carried out with 2,197 LJ particles, applying periodic boundary condition. Larger sys-

tems with 64,000 particles were also tested, where the bulk properties showed no significant

dependence on the system size.

The liquid-gas critical temperature of the LJ fluid was estimated using two approaches:

(i) the law of rectilinear diameter [3], and (ii) a cubic equation approach on pressure-density

isotherm near the critical point [4].

First, the law of rectilinear diameter states that:

ρl + ρg
2

= ρc + A(T − Tc), (2)

where ρg and ρl are densities of gas and liquid phases in equilibrium, ρc and Tc are the

critical density and temperature, and A is acquired from numerical fitting. In addition,

near-critical temperature and density follow the scaling law:

ρl − ρg = B(T − Tc)β, (3)

where β is the scaling exponent and B is a numerical fitting parameter. Using Gibbs

ensemble Monte Carlo simulations in near-critical temperatures, the critical temperature

and density can be estimated [3].

Second, van der Waals-like cubic equation requires that ∂P/∂ρ and ∂2P/∂ρ2 vanish at the

critical temperature and density. Noting that the sign of thermodynamic response function
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FIG. 1. Determination of critical point. (a) Temperature dependence of density, fitted to

Eq. (2). (b) Scaling relations near the critical point, following Eq. (3). (c) Pressure-density data

of LJ fluid, calculated along five different isotherms.

(compressibility for this case) expresses the stability of the system, critical temperature

is the lowest temperature that allows every value of density be stable. Below the critical

temperature, the system will spontaneously separate into liquid and gas phases following

the Maxwell construction. If the initial density is an intermediate value between densities

of liquid and gas, it will exhibit negative compressibility in constant-volume simulations.

Figure 1 shows the application of two methods to the near-critical LJ fluid. The crit-

ical temperature and density were calculated as (Tc, ρc) = (1.3047, 0.3139) using the law

of rectilinear diameter, and (Tc, ρc) = (1.3449, 0.3110) using the cubic equation approach

(LJ units). The critical temperatures agreed by 3.1% difference, and for the stability of

simulation, the critical temperature was estimated as the higher value, 1.3449.
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FIG. 2. Determination of isobaric hear capacity. (a) Bulk enthalpy plotted against temper-

ature. Different markers are for different pressure values, corresponding to reduced densities (ρr)

of 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2, from top to bottom. (b) Heat capacity along different isotherms,

corresponding to reduced temperatures (Tr) of 1.05, 1.1, 1.2 and 1.5, from top to bottom.

In Fig. 1(c) of the main manuscript, the local maxima of isobaric heat capacity, CP , are

shown. CP was calculated by linear regression the temperature-dependent bulk enthalpy in a

short temperature range, from which the slope is CP = (∂H/∂T )P . For the evaluation of CP

for every (T, P ) point, three temperature points were sampled, where the bulk enthalpy was

calculated by averaging twelve parallel simulations with different initial velocities. Enthalpy

calculation was performed in NPT simulation, using Nose-Hoover thermostat and barostat.

A representative example of enthalpy and CP is shown in Fig. 2.

THE NEURAL NETWORK

Architecture

A deep neural network (DNN) was trained to directly classify the liquid-like and gas-

like particles in supercritical Lennard-Jones (LJ) fluid. The architecture of the DNN was

designed following VGGNet, the winning architecture of 2014 ImageNet Large Scale Visual

Recognition Competition [5]. VGGNet is characterized by the use of multiple convolutional
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FIG. 3. Neural network architecture.

neural network (CNN) layers followed by fully connected layers, where the CNN layers all

implement the smallest filter layers possible, 3× 3.

Figure 3 shows the architecture of the DNN used in this work. The DNN begins with seven

layers of CNN. Since the local environment data of atoms were prepared as a (N + 1) × 3

array (to be discussed), we adopted the one-dimensional CNN to process the data: the

original data array is interpreted as a one-dimensional data with depth of N + 1.

To ensure that the length of the arrays are not changed along the convolutional layers, all

layers were padded with zero elements at the end of the array. All the layers were followed

by rectified linear unit (ReLU) activation function. At the end of the convolutional layers,

max pooling of length 2 was carried out, and a dropout layer of probability 0.25 was added.

The convolutional layers were followed by fully connected layers, of which size gradually

decreases to encode the environment data into a small number of numerics which are used

to determine the label of each particle. All but the very last outputs were followed by ReLU,

and the last layer was processed by a softmax function. The softmax output was rounded

to return 0 or 1: if it returns 0, it is a gas-like particle, and if it returns 1, it is a liquid-like

particle.

Optimization of trainable parameters were carried out using Adam algorithm, with hy-

perparameters β1 = 0.9, β2 = 0.999, and ε = 1×10−10 [6]. The learning rate was 5.0×10−5.
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Training data

The DNN was designed to capture the local structure of a given particle. The input of

DNN is a (N + 1) × 3 array, where N is the number of nearest neighbors to observe. The

first row of the array is for the “host” particle, and (i + 1)-th row is for the i-th nearest

neighbor (1 ≤ i ≤ N). The first column is for the distance between the host particle and

particle i. The second and third columns are for the Voronoi density and number of Voronoi

neighbors of particle i.

Considering that the fluid structure is scale-invariant at LGCP, sizes of liquid-like and

gas-like clusters in SCF cannot be estimated a priori. Thus the DNN should not be trained

with large N , or the DNN will “cheat” from the bulk or collective properties, instead of

learning from the localized information. This requires to minimize N without significantly

undermining the training accuracy; N = 0 will reduce to the statistical mixture model

approach in Yoon et al. [7], and N → ∞ will only return the bulk information. Notably,

even the choice of N = 1 showed satisfactory training accuracy, implying that the 2 × 3

array provided enough information to classify near-critical liquid and vapor particles.

To avoid the overfitting problem, the DNN was trained with only one epoch. To compen-

sate for the small-epoch training, extraordinarily large training set was used. The training

set was generated from the vapor and liquid phases in equilibrium at T = 0.97Tc. From both

phases, 5,000 independent snapshots were sampled, summing up to 10,985,000 particles for

each phase. Training was performed on 80% of the set, and 20% was reserved for validation:

the training and validation accuracies were 94.74% and 94.75%, respectively, implying that

the generalization was successful. The trained DNN was further tested with liquid and va-

por particles, simulated at the temperature of T = 0.8Tc. The DNN was able to distinguish

total 21,970,000 liquid and vapor particles with 100% accuracy.

Considering the strong volume fluctuations in the near-critical liquid and vapor phases,

the performance of the DNN is satisfactory. In near-critical temperature, thermal fluctu-

ations might possibly lead to instantaneous generations of bubbles and droplets in liquid

and gas phases, respectively, which fail to grow and are immediately destroyed. These tran-

sient particles serve as noises in the training set, hampering the DNN from achieving 100%

training accuracy.
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