Supporting Information

On-Column Dimethylation with Capillary Liquid Chromatography-Tandem Mass Spectrometry for Online Determination of Neuropeptides in Rat Brain Microdialysates

Rachael E. Wilson, Andrea Jaquins-Gerstl, Stephen G. Weber*

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260

*Corresponding author: sweber@pitt.edu Fax: 412-624-1668

Mass Spectrometry

Table S1. Selected lons for Fragmentation and Quantitation of Neuropeptides					
Peptide	Abbreviation	Precursor m/z ^a	Daughter m/z ^b		
Dimethyl leu-enkephalin	Light LE	584.30	425 + 453		
² H ₄ Dimethyl leu-enkephalin	Heavy LE	588.30	429 + 457		
Dimethyl yaGfl	Light yaGfl	598.30	439 + 467		
² H ₄ Dimethyl yaGfl	Heavy yaGfl	602.30	443 + 471		
Dimethyl met-enkephalin	Light ME	602.30	425 + 453		
² H ₄ Dimethyl met-enkephalin	Heavy ME	606.30	429 + 457		

Table S1. Selected lons for Fragmentation and Quantitation of Neuropeptides

^aIsolation widths were 3 m/z b Tolerance was ± 0.5 m/z.

Table S2 Selected lons for Fragmentation and Quantitation in Labeling Tests

Peptide	Center m/z	Isolation ^a Width (m/z)	Daughter m/z
Leu-enkephalin (LE)	556.60	3	397 + 425
yaGfl	570.25	3	411 + 439
Met-enkephalin (ME)	574.20	3	397 + 425
Light LE	588.30	8	425 + 453
Heavy LE	588.30	8	429 + 457
Light yaGfl	602.30	10	439 + 467
Heavy yaGfl	602.30	10	443 + 471
Light ME	602.30	10	425 + 453
Heavy ME	602.30	10	429 + 457

^aIsolation widths were chosen so that multiple analytes, including potential cross-labeled products, could be detected in a single fragmentation step.

Microdialysis Probe Location

Labeling Tests

To confirm the absence of unlabeled or cross-labeled peptides, we performed a series of tests in which labeling was conducted as described in the text but: 1) The Ringer's standard was injected prior to treatment with labeling reagents and no aqueous standard was injected and 2) The aqueous standard was injected after quenching of the light label but before treatment with the heavy label. In this test, no Ringer's standard was injected. For each test the Ringer's standard consisted of 50 pM (Fig. S2), 100 pM (Fig. S3), or 200 pM (Fig. S4) LE, yaGfl, and ME in Ringer's and the aqueous standard consisted of matching concentrations (either 50, 100, or 200 pM) of LE, yaGfl, and ME in water. As expected, for the first test we observed only light product in the mass spectra and for the second test we saw only heavy product, indicating complete labeling.

In Vivo Microdialysis Data

areas were divided by the corresponding heavy peak area to obtain the relative area. The basal relative areas for each individual rat were averaged. Each time point was divided by the mean basal relative area and expressed as a percentage. Gray shaded areas indicate points that were collected during potassium stimulation. The time axis of each rat has been adjusted so that the potassium stimulated points are aligned.

$\mathbf{r}_{\mathbf{a}}$	Table S3 Comparison	of Basal ^a Levels	of ME with Potassium	Stimulated ^b Levels
---------------------------	---------------------	------------------------------	----------------------	--------------------------------

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F	P-value
Between Group	s 0.015	1	0.015	0.20	0.67
Within Groups	0.71	9	0.079		
Total	0.72	10			

^aThe mean of pooled basal levels (\pm SEM) was 0.260 \pm 0.062 for n = 6 measurements. ^bThe mean of pooled potassium stimulated levels (\pm SEM) was 0.33 \pm 0.10 for n = 5 measurements.

°Comparisons were made using a one-tailed t-test with 95% confidence.

Citations

(1) Paxinos, G.; Watson, C. *The Rat Brain in Stereotaxic Coordinates*; Academic Press, 1998.