Supporting Information

Satellite-Based Estimates of Daily NO₂ Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model

Yu Zhan,^{†,‡,§} Yuzhou Luo,^{\parallel} Xunfei Deng,^{\perp} Kaishan Zhang,[†] Minghua Zhang,^{\parallel} Michael L. Grieneisen,^{\parallel} Baofeng Di^{*,‡,†}

[†]Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China

[‡]Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610200, China

[§]Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, Sichuan 610065, China

^{II} Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA

[⊥]Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China

Corresponding author *Phone: +86 2885996656; fax +86 2885405613; e-mail: dibaofeng@scu.edu.cn.

Number of pages: 34 Number of tables: 11 Number of figures: 19

S.1 Temporal convolution

Temporal convolution with a Gaussian kernel was employed to process the original OMI-NO2 satellite retrievals.

$$O(t) = \sum_{n} \left[I(n) \cdot W(t-n) \right] / \sum_{n} W(t-n)$$
(1)

where O(t) is the output value on the *t*th day iterating through the whole study period, I(n) is the original OMI-NO2 value on the *n*th day if available, and W(t-n) is the weight of I(n) in calculating O(t). W(t-n) is determined by the Gaussian kernel function:

$$W(t-n) = \exp\left[-\left(t-n\right)^2 / \left(2\sigma^2\right)\right]$$
(2)

where σ is the standard deviation of the Gaussian function, which is set to 60 days based on the sensitivity analyses considering the input completeness and output smoothness.

S.2 Algorithm of random forests¹

For *tree* = 1 to 500:

- Randomly draw a sample from the training data with replacement, and the sample size is the same as the training data;
- Grow a tree by starting with a single node, and then repeat the steps below until only one observation presents in each terminal node:
 - Randomly select one third of the predictors;
 - Find the split that reduces the squared error the most;

Average the predictions of all trees as the model output.

S.3 Hourly-scaling approach

The random forest-spatiotemporal kriging (RF-STK) model was used to predict the hourly NO₂ concentrations when the Aura satellite passed, which were then scaled to daily concentrations. The detailed procedures are as follows:

- (1) Train the RF-STK model to simulate the NO_2 for the overpass hour of the Aura satellite;
- (2) Use the RF-STK model to predict the hourly NO_2 for unmonitored areas;
- (3) Calculate the scaling factors (i.e., the ratio of observed hourly to daily NO₂) for the monitoring sites;
- (4) Estimate the scaling factors for the unmonitored areas by using kriging interpolation;
- (5) Divide the hourly NO₂ predictions by the estimated scaling factor to get the daily NO₂ predictions for the unmonitored areas.

Year(s)	Spring	Summer	Fall	Winter	Annual				
2013	68.0	78.0	68.5	51.7	66.6				
2014	70.0	77.1	61.7	52.5	65.4				
2015	65.3	76.7	62.8	49.5	63.7				
2016	66.2	76.5	61.6	47.5	62.5				
2013-2016	67.4	77.1	63.6	50.3	64.6				

 Table S1 Coverage rates of OMI-NO2 satellite retrievals across China (%)

and the offit succinte retrieved vert	ical column achiste	or the hoposphe	
Temporal Resolution	Level-2	Level-3	Level-3 Conv. ^a
Day	0.18	0.24	0.27
Month	0.26	0.38	0.42
Season	0.38	0.44	0.48
Year	0.45	0.48	0.48
Spatial ^b	0.53	0.53	0.52

Table S2 Correlation coefficient squares (R^2) between the observed ambient NO₂ concentrations and the OMI satellite-retrieved vertical column density of the tropospheric NO₂

^a OMI retrievals processed with the temporal convolution. ^b Multiyear averages, i.e., no temporal resolution.

Symbol	Unit	Variable definition	Spatial ^a	Temporal ^a	Convolution ^b
OMI	molecule/cm ²	OMI-retrieved tropospheric	$0.25^{\circ} \times 0.25^{\circ}$	Day	Temporal
DOY		NO_2 density			
YEAR	-	Day of year Year	-	-	-
EVP	- mm	Evaporation	- Point	- Day	-
PRE	mm	Precipitation	Point	Day Day	-
PRS	hPa	Atmospheric pressure	Point	Day Day	-
RHU	111 a %	Relative humidity	Point	Day Day	-
SSD	hour	Sunshine duration	Point	Day Day	-
TEM	°C	Temperature	Point	Day Day	-
WIN	m/s	Wind speed	Point	•	-
PBLH	lii/s km	Planetary boundary layer	0.625°×0.5°	Day Day	-
ГDLП	KIII	height	0.023 ×0.3	Day	-
ELV	m	Elevation	90m×90m	None	Spatial
NDVI	-	Normalized Difference	250m×250m	8 Days	Spatial
		Vegetation Index		2	•
POP	people/km ²	Population density	30"×30"	None	Spatial
LU10	%	Cultivated land area	30m×30m	None	Spatial
LU20	%	Forest area	30m×30m	None	Spatial
LU30	%	Grassland area	30m×30m	None	Spatial
LU40	%	Shrubland area	30m×30m	None	Spatial
LU50	%	Wetland area	30m×30m	None	Spatial
LU60	%	Waterbody area	30m×30m	None	Spatial
LU80	%	Artificial surface area	30m×30m	None	Spatial
LU90	%	Bareland area	30m×30m	None	Spatial
LU100	%	Permanent frozen land area	30m×30m	None	Spatial
LU255	%	Sea area	30m×30m	None	Spatial
ROAD	km/grid	Road density	Polyline	None	Spatial
eBC	Mg/grid	Emission of black carbon	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eCO	Mg/grid	Emission of CO	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eCO2	Mg/grid	Emission of CO ₂	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eNH3	Mg/grid	Emission of NH ₃	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eNOx	Mg/grid	Emission of NO ₂ and NO	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eOC	Mg/grid	Emission of organic carbon	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
ePM25	Mg/grid	Emission of PM _{2.5}	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
ePMcoar	Mg/grid	Emission of PM-coarse	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eSO2	Mg/grid	Emission of SO ₂	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial
eVOC	Mg/grid	Emission of VOC	$0.25^{\circ} \times 0.25^{\circ}$	Month	Spatial

Table S3 List of variable symbols and definitions

^a Spatial or temporal resolution of raw data. ^b Temporal: OMI is processed with the temporal convolution. Spatial: these variables have accompanying variables processed with the spatial convolution.

Variable	Number of observations	Unit	Mean	Standard deviation	Median	Interquartile range
Evaporation	1202560	mm	2.7	2	2.4	2.6
Precipitation	1140852	mm	2.7	9.5	0	0.6
Atmospheric pressure	1219978	hPa	924	108	969	120
Relative humidity	1219982	%	66	20	69	28
Sunshine duration	1219032	hour	5.9	4.1	6.8	7.7
Temperature	1220028	°C	12.5	11.9	14.4	16.9
Wind speed	1219439	m/s	2.2	1.4	1.8	1.4

 Table S4 Descriptive statistics of the meteorological variables

predicting	predicting the ambient NO ₂ concentrations for China during 2013-2016								
Metric ^a	Daily	Monthly	Seasonal	Annual	Spatial				
R^2	0.62	0.65	0.68	0.68	0.73				
RMSE	13.3	10.2	9.0	7.7	6.5				
Slope	0.67	0.71	0.73	0.72	0.77				
RPE	39.5%	30.1%	26.2%	22.4%	19.9%				
MFB	0.066	0.044	0.037	0.029	0.027				
MFE	0.32	0.25	0.22	0.19	0.17				
MNB	0.27	0.19	0.18	0.07	0.06				
MNE	0.48	0.36	0.34	0.21	0.19				

Table S5 Performance of the random-forest-spatiotemporal-kriging model (RFSTK) in predicting the ambient NO₂ concentrations for China during 2013-2016

^a R^2 : coefficient of determination; RMSE: root mean square error ($\mu g/m^3$); RPE: relative prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean normalized bias; MNE: mean normalized error.

Table S6 Prediction performance for data points with or without OMI-NO2 values prior to imputation by temporal convolution^a

OMI-NO2	R^2	Slope	RMSE	RPE	MFB	MFE	MNB	MNE
Available	0.61	0.67	13.2	40%	0.07	0.32	0.27	0.48
Missing	0.62	0.67	13.6	39%	0.06	0.32	0.26	0.47

^a R^2 : coefficient of determination; RMSE: root mean square error ($\mu g/m^3$); RPE: relative prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean normalized bias; MNE: mean normalized error. These metrics are evaluated in the 10-fold cross-validation. Approximately 65% of the data had OMI-NO2 values prior to the imputation.

Climata Dagion ^a	Stratified					I	Fold				
Climate Region ^a	Sampling ^b	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Qinghai-Tibet Plateau	Y	4	4	4	4	4	3	3	3	3	3
Qilighai-110et I lateau	Ν	3	2	3	4	5	2	2	6	2	6
Subtropical Monsoon	Y	87	87	87	87	87	86	86	86	86	86
	Ν	82	85	75	77	88	86	100	85	89	98
Temperate Continental	Y	7	6	6	6	6	6	6	6	6	6
Temperate Continental	Ν	9	5	7	7	7	7	5	8	2	4
Temperate Monsoon	Y	66	66	66	66	66	66	66	65	65	65
Temperate Monsoon	Ν	68	70	79	72	63	65	57	61	67	55
Tropical Monsoon	Y	4	4	4	4	4	4	4	4	4	3
	Ν	4	4	2	6	3	6	2	5	5	2

Table S7 Number of NO_2 monitoring sites within each cross-validation fold for each climate region

^a Please refer to Figure S10 for the map of these climate regions.

^b Y means random sampling stratified by climate regions, with cross-validation results of R^2 =0.61, Slope=0.67, RMSE=13.4, RPE=40%, MFB=0.06, MFE=0.32, MNB=0.26, MNE=0.48; and N represents non-stratified random sampling, with cross-validation results of R^2 =0.62, Slope=0.67, RMSE=13.3, RPE=40%, MFB=0.07, MFE=0.32, MNB=0.27, MNE=0.48.

2010 with the same setting of 10-1010-cross-vandation									
Metric ^a	LR^{b}	STK^{b}	LR-STK ^b	RF_0^{b}	RF^{b}	RF-STK ^b	$RF-STK_h^b$		
R^2	0.38	0.60	0.64	0.60	0.61	0.62	0.48		
Slope	0.38	0.57	0.62	0.63	0.64	0.67	0.67		
RMSE	16.8	13.5	12.9	13.5	13.4	13.3	16.0		
RPE	50%	40%	38%	40%	40%	40%	48%		
MFB	0.11	0.10	0.08	0.09	0.08	0.07	0.05		
MFE	0.40	0.33	0.31	0.33	0.32	0.32	0.36		
MNB	0.40	0.34	0.29	0.30	0.29	0.27	0.28		
MNE	0.64	0.53	0.49	0.50	0.49	0.48	0.53		

Table S8 Comparisons of the statistical models in predicting daily NO₂ for China during 2013-2016 with the same setting of 10-fold-cross-validation

^a R^2 : coefficient of determination; RMSE: root mean square error ($\mu g/m^3$); RPE: relative prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean normalized bias; MNE: mean normalized error. Bold: the best performance of each evaluation metric. Lower values are better for each metric except R^2 and slope.

^b LR: Linear Regression model; STK: Spatiotemporal Kriging model; LR-STK: Linear Regression-Spatiotemporal Kriging hybrid model; RF₀: Random Forest model without variable selection; RF: Random Forest model with variable selection; RF-STK: Random Forest-Spatiotemporal Kriging model; RF-STK_h: Random Forest-Spatiotemporal Kriging model with hourly scaling.

Reference	Model	Study Area	Study	Validation	Metric
2	0 . 112. 1		Period		\mathbf{p}^2 and
2	Satellite-based	Australia	2006-	Fitting	$R^2 = 0.81$
	LUR; lasso		2011		(annual)
					$R^2 = 0.76$
3					(monthly)
5	Mixed effects	New England	2005-	10-fold sample-	$R^2 = 0.79$ (daily
	model	region, United	2010	based cross-	
4		States		validation	2
4	LUR	Canada	2006	Fitting	$R^2 = 0.73$
5					(spatial)
5	LUR	Western Europe	2005-	Fitting	$R^2 = 0.50$
6			2007		(spatial)
6	LUR	Netherlands	2007	Fitting	$R^2 = 0.84$
7					(annual)
7	LUR	Changsha,	2010	Leave-25%-out-	$R^2 = 0.67$
0		China		validation	(annual)
8	LUR	Shanghai, China	2008-	Leave-one-out-	$R^2 = 0.75$
0			2011	cross-validation	(annual)
9	LUR	Pearl River	2013-	Leave-one-out-	$R^2 = 0.71$
		Delta, China	2014	cross-validation	(annual)
10	LUR	Western Europe	2009-	Hold-out-	$R^2 = 0.60$
			2010	validation on 20%	(annual)
				of monitoring site	
11	LUR	Seoul, Korea	2003	Fitting	$R^2 = 0.95 \sim 0.98$
					(seasonal)
12	LUR; Lasso	Global	2011	Bootstrap 10%	$R^2 = 0.53$
	regression			cross-validation	(annual)
13	LUR; monthly	Contiguous	2000-	Fitting	$R^2 = 0.79$
	scaling	United States	2010	-	(spatial);
	-				$R^2 = 0.84$
					(monthly)
14	LUR-UK;	Contiguous	1990-	20-fold site-based	$R^2 = 0.85$
	partial least	United States	2012	cross-validation	(annual)
	square				× /
15	LUR;	Contiguous	2006	Leave-10%-out	$R^2 = 0.76$
	Stepwise	United States		validation	(annual)
	multivariate				× /
	regression				

Table S9 Performance of the previous statistical models in predicting NO₂

	Daily I	NO ₂	Spatial NO ₂ ^c		
Metric ^b	Linear Regression	Random Forest	Linear Regression	Random Forest	
R^2	0.39	0.56	0.61	0.83	
Slope	0.39	0.54	0.62	0.81	
RMSE	16.8	14.3	7.9	5.2	
RPE	50%	42%	24%	16%	
MFB	0.10	0.08	0.03	0.01	
MFE	0.39	0.33	0.21	0.13	
MNB	0.38	0.29	0.08	0.03	
MNE	0.63	0.50	0.24	0.14	

Table S10 Comparisons of the random forest and the linear regression models in predicting NO₂ for temporal extrapolation^a

^a The two models are trained with the data of 2014 and 2015, and then are used to make predictions for 2013 and 2016. The two models have the same set of predictor variables. ^b R^2 : coefficient of determination; RMSE: root mean square error (μ g/m³); RPE: relative

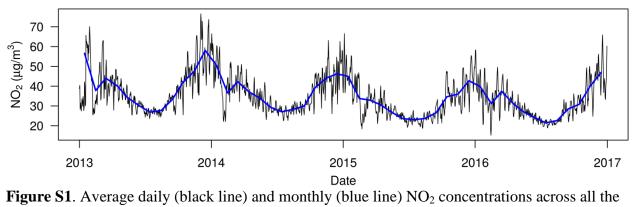
prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean normalized bias; MNE: mean normalized error. Bold: the best performance of each evaluation metric. Lower values are better for each metric except R^2 and slope.

^c Two-year averages, i.e., no temporal resolution.

Economic Zone ^a	Spring	Summer	Fall	Winter	Annual	Trend	Trend 95% CI	Trend P
Beijing-Tianjin Metro	46.8 ± 7.4	35.5 ± 6.2	54.1 ± 7.4	62.0 ± 7.1	49.5 ± 6.7	-0.61	(-1.82, 0.60)	=0.32
Pearl River Delta	41.7 ± 9.1	29.4 ± 6.8	39.3 ± 7.8	49.9 ± 9.4	40.1 ± 7.9	-1.37	(-2.19, -0.55)	< 0.01
Sichuan Basin	30.4 ± 10.9	23.6 ± 9.3	29.6 ± 9.9	38.0 ± 10.9	30.4 ± 10.1	-1.10	(-1.44, -0.76)	< 0.01
Yangtze River Delta	40.6 ± 8.2	28.3 ± 6.0	39.8 ± 7.2	50.2 ± 8.5	39.7 ± 7.3	-1.03	(-1.62, -0.44)	< 0.01

Table S11 Population-weighted ambient NO₂ concentrations (mean \pm standard deviation; $\mu g/m^3$) and temporal trends ($\mu g/m^3/year$) during 2013-2016 for the main economic zones in China

^a The four economic zones are located in North, East, South, and Southwest China, respectively.



monitoring sites for China during 2013-2016.

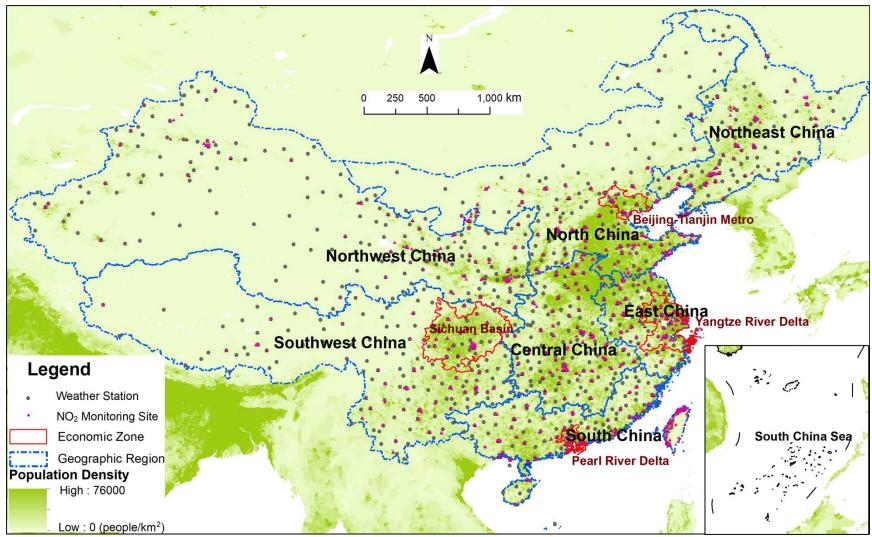
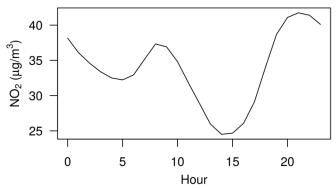


Figure S2. Spatial distribution of the NO₂ monitoring sites in China during 2013-2016. The basemap of population density data for 2015 is obtained from the Gridded Population of the World (GPWv4; 30 arc-second resolution).¹⁶



Hour Figure S3. Average diurnal pattern in NO₂ concentrations across all the monitoring sites for China during 2013-2016. Two peaks appeared at 8am and 21pm.

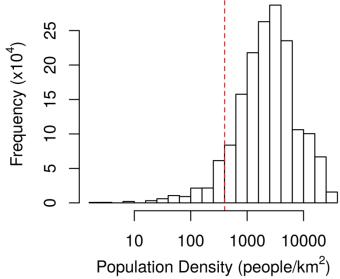
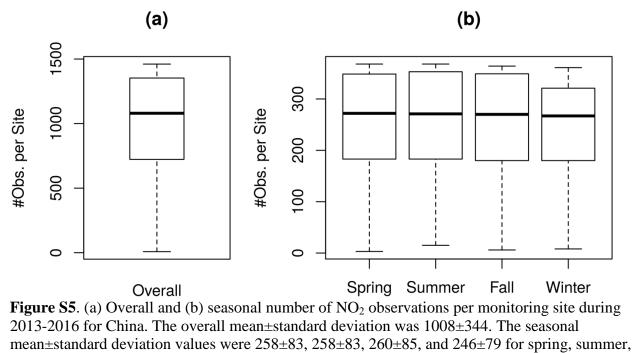
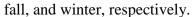


Figure S4. Frequency distributions of the numbers of NO₂ observations by population density. The population density of 400 people/km² is indicated by the red line.





1				F
-		 		-

Figure S6. Overlay of the 0.25° grid (blue line) on the 0.1° grid (black dashed line).

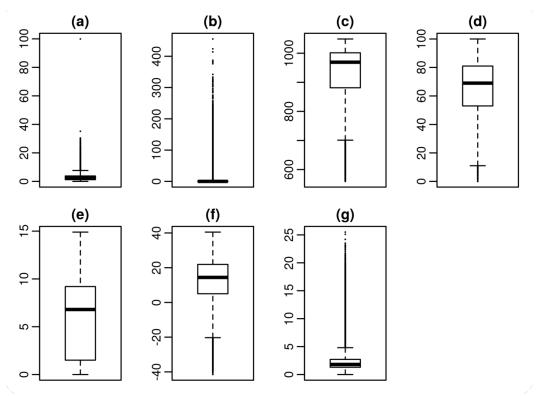


Figure S7. Boxplots of the meteorological variables: (a) evaporation (mm), (b) precipitation (mm), (c) atmospheric pressure (hPa), (d) relative humidity (%), (e) sunshine duration (hour), (f) temperature (°C), and (g) wind speed (m/s).

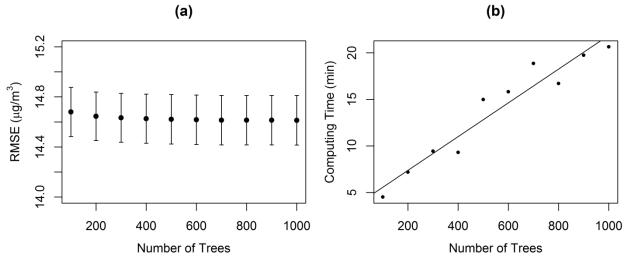


Figure S8. (a) Root mean square error (RMSE) as a function of the number of trees for the random forest model with the selected predictors. The RMSE is evaluated with 10-fold cross-validation on a random subset (100,000 samples) of the training data. The error bars represent the standard errors across the 10 folds. (b) Computing time for different numbers of trees in this evaluation, with a fitted regression line.

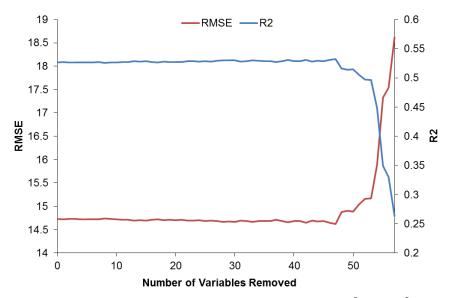


Figure S9. Evolution of cross-validation RMSE ($\mu g/m^3$) and R^2 for the random forest submodels through the variable selection process. Refer to Table S3 for the detailed descriptions of the variables.

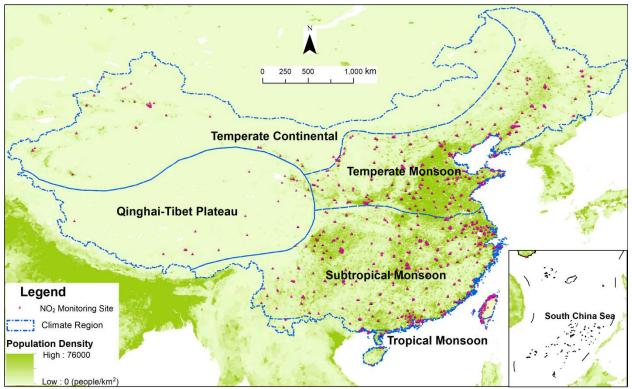


Figure S10. Major climate regions of China.

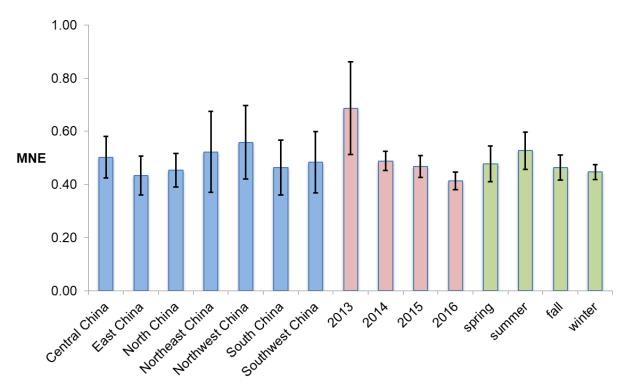


Figure S11. Performance of the random-forest-spatiotemporal-kriging (RF-STK) model in predicting daily NO₂ by regions, years, and seasons. The mean and standard deviation of the mean normalized error (MNE) over all of the 10 cross-validation folds are presented. The numbers of monitoring sites in 2013, 2014, 2015, and 2016 are 744, 1022, 1612, and 1604, respectively. The annual average numbers of monitoring sites in Central, East, North, Northeast, Northwest, South, and Southwest China are 173, 200, 256, 125, 112, 239, and 140, respectively.

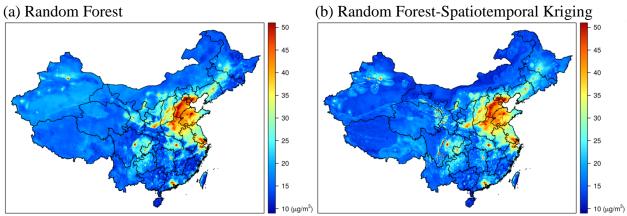


Figure S12. Average NO₂ during 2013-2016 predicted by (a) the random forest model and (b) the random-forest-spatiotemporal-kriging model.

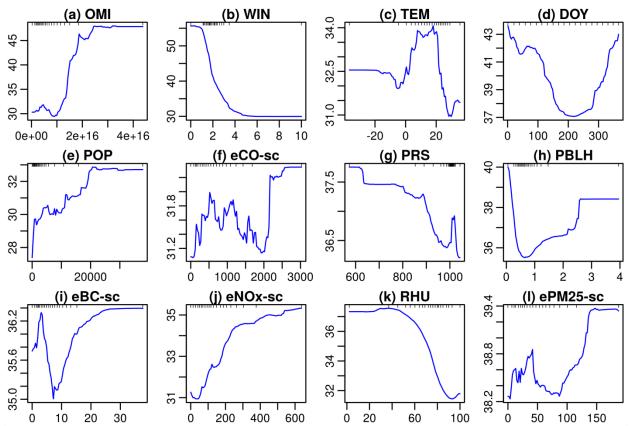


Figure S13. Partial dependence plots for the random forest model, indicating the effects of the predictor variables (a) OMI, (b) WIN, (c) TEM, (d) DOY, (e) POP, (f) eCO-sc, (g) PRS, (h) PBLH, (i) eBC-sc, (j) eNOx-sc, (k) RHU, and (l) ePM25-sc on the NO₂ predictions. The rug plot indicates the data density. Note that the partial dependence estimation tends to be unreliable at the two ends of horizontal axis due to their low data densities. Refer to Table S3 for the descriptions of the predictor variables.

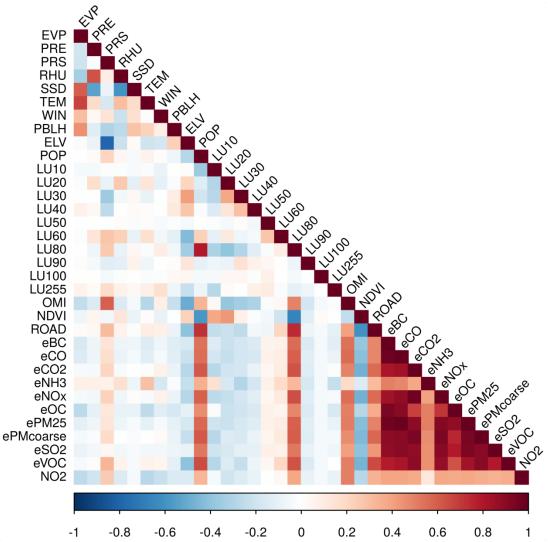


Figure S14. Correlations among the geographic factors and NO₂. The Spearman's rank correlation coefficients are used due to the prevalence of nonlinearity. Refer to Table S3 for the detailed descriptions of the variables.

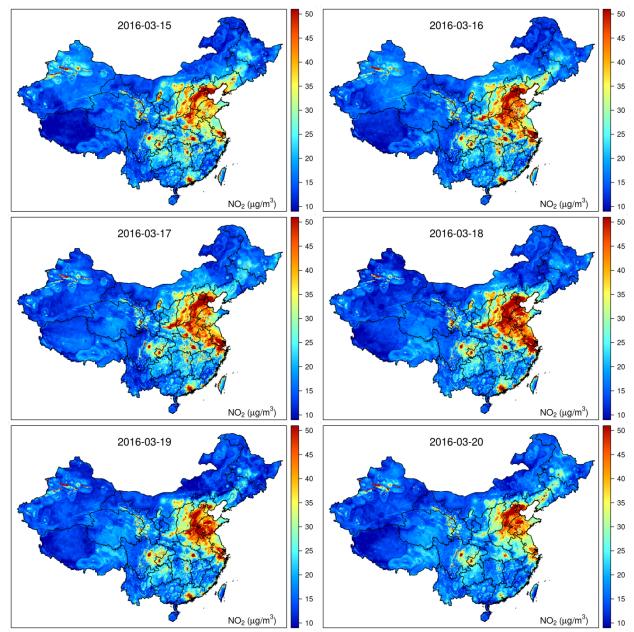


Figure S15. Daily surfaces of the ambient NO_2 concentrations across China from March 15 to March 20, 2016, which are examples of daily predictions by the random forest-spatiotemporal kriging (RF-STK) model.

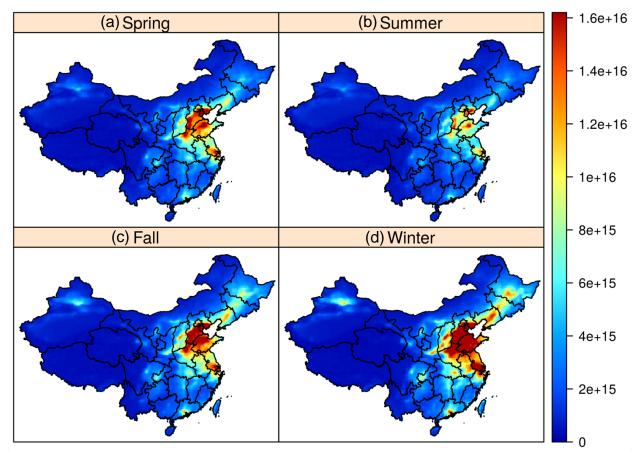


Figure S16. Vertical column density (molecules/cm²) of tropospheric NO₂ retrieved from the OMI Level-3 product and processed by temporal convolution for (a) spring, (b) summer, (c) fall, and (d) winter during 2013-2016.

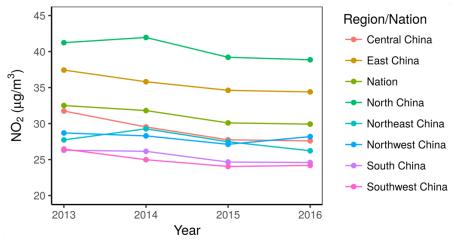


Figure S17. Population-weighted annual averages of NO₂ predictions for the major regions and the whole nation of China.

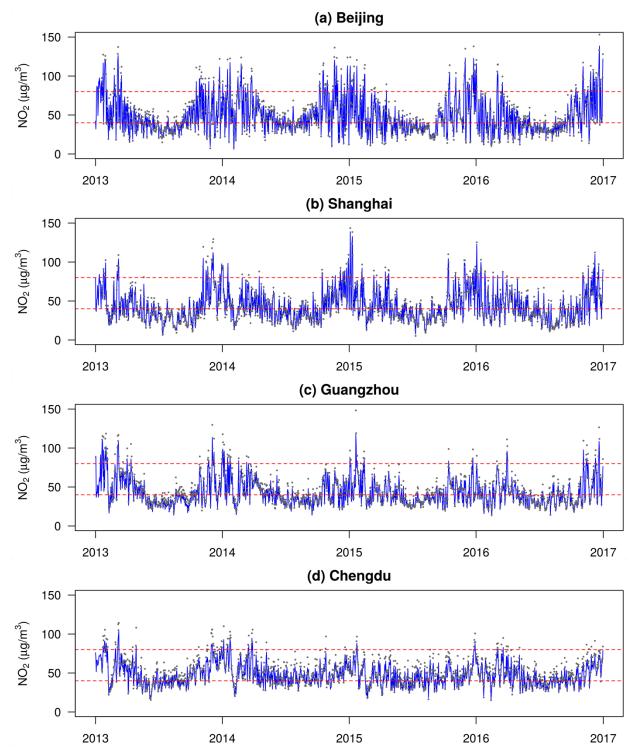


Figure S18. Observations (black dots) and predictions (blue lines) of daily NO_2 during 2013-2016 for (a) Beijing, (b) Shanghai, (c) Guangzhou, and (d) Chengdu, which are the major cities in the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, the Sichuan Basin regions, respectively.

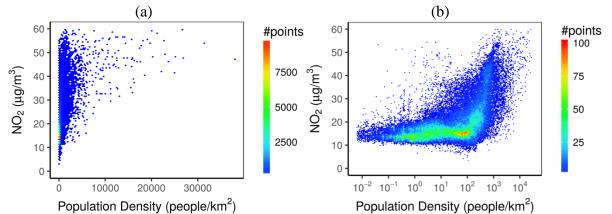


Figure S19. Scatterplots showing the relationship between the population density and the estimated average ambient NO₂ concentrations for 2013-2016 in China. The population density is at (a) original and (b) logarithm scales.

REFERENCES

1. Breiman, L., Random Forests. *Mach. Learn.* **2001**, *45* (1), 5-32.

2. Knibbs, L. D.; Hewson, M. G.; Bechle, M. J.; Marshall, J. D.; Barnett, A. G., A national satellite-based land-use regression model for air pollution exposure assessment in Australia. *Environ. Res.* **2014**, *135*, 204-211.

3. Lee, H. J.; Koutrakis, P., Daily ambient NO₂ concentration predictions using satellite ozone monitoring instrument NO₂ data and land use regression. *Environ. Sci. Technol.* **2014**, *48* (4), 2305-2311.

4. Hystad, P.; Setton, E.; Cervantes, A.; Poplawski, K.; Deschenes, S.; Brauer, M.; van Donkelaar, A.; Lamsal, L.; Martin, R.; Jerrett, M., et al., Creating national air pollution models for population exposure assessment in Canada. *Environ. Health Perspect.* **2011**, *119* (8), 1123-1129.

5. Vienneau, D.; de Hoogh, K.; Bechle, M. J.; Beelen, R.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Hoek, G.; Marshall, J. D., Western European land use regression incorporating satellite- and ground-based measurements of NO₂ and PM₁₀. *Environ. Sci. Technol.* **2013**, *47* (23), 13555-13564.

6. Hoek, G.; Eeftens, M.; Beelen, R.; Fischer, P.; Brunekreef, B.; Boersma, K. F.; Veefkind, P., Satellite NO_2 data improve national land use regression models for ambient NO_2 in a small densely populated country. *Atmos. Environ.* **2015**, *105*, 173-180.

7. Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X., et al., Land use regression models coupled with meteorology to model spatial and temporal variability of NO₂ and PM₁₀ in Changsha, China. *Atmos. Environ.* **2015**, *116*, 272-280.

8. Meng, X.; Chen, L.; Cai, J.; Zou, B.; Wu, C.-F.; Fu, Q.; Zhang, Y.; Liu, Y.; Kan, H., A land use regression model for estimating the NO₂ concentration in Shanghai, China. *Environ. Res.* **2015**, *137*, 308-315.

9. Yang, X.; Zheng, Y.; Geng, G.; Liu, H.; Man, H.; Lv, Z.; He, K.; de Hoogh, K., Development of PM_{2.5} and NO₂ models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region, China. *Environ. Pollut.* **2017**, *226*, 143-153.

10. de Hoogh, K.; Gulliver, J.; Donkelaar, A. v.; Martin, R. V.; Marshall, J. D.; Bechle, M. J.; Cesaroni, G.; Pradas, M. C.; Dedele, A.; Eeftens, M., et al., Development of West-European PM_{2.5} and NO₂ land use regression models incorporating satellite-derived and chemical transport modelling data. *Environ. Res.* **2016**, *151*, 1-10.

11. Kim, Y.; Guldmann, J.-M., Land-use regression panel models of NO₂ concentrations in Seoul, Korea. *Atmos. Environ.* **2015**, *107*, 364-373.

12. Larkin, A.; Geddes, J. A.; Martin, R. V.; Xiao, Q.; Liu, Y.; Marshall, J. D.; Brauer, M.; Hystad, P., A global land use regression model for nitrogen dioxide air pollution. *Environ. Sci. Technol.* **2017**, *51* (12), 6957-6964.

13. Bechle, M. J.; Millet, D. B.; Marshall, J. D., National spatiotemporal exposure surface for NO₂: Monthly scaling of a satellite-derived land-use regression, 2000–2010. *Environ. Sci. Technol.* **2015**, *49* (20), 12297-12305.

14. Young, M. T.; Bechle, M. J.; Sampson, P. D.; Szpiro, A. A.; Marshall, J. D.; Sheppard, L.; Kaufman, J. D., Satellite-based NO₂ and model validation in a national prediction model based on universal kriging and land-use regression. *Environ. Sci. Technol.* **2016**, *50* (7), 3686-3694.

15. Novotny, E. V.; Bechle, M. J.; Millet, D. B.; Marshall, J. D., National satellite-based land-use regression: NO₂ in the United States. *Environ. Sci. Technol.* **2011**, *45* (10), 4407-4414.

16. CIESIN, Gridded Population of the World, Version 4 (GPWv4): Population count. In NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, 2016.