
S1 
 

Supporting Information 
 
Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest 
and Spatiotemporal Kriging Model 
 
Yu Zhan,†,‡,§ Yuzhou Luo,‖ Xunfei Deng,⊥ Kaishan Zhang,† Minghua Zhang,‖  
Michael L. Grieneisen,‖ Baofeng Di*,‡,† 
 
†Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 
610065, China 
‡Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 
610200, China 

§Sino-German Centre for Water and Health Research, Sichuan University, Chengdu, Sichuan 
610065, China 
‖Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, 
USA 
⊥Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 
Zhejiang 310021, China 
 
Corresponding author 
*Phone: +86 2885996656; fax +86 2885405613; e-mail: dibaofeng@scu.edu.cn. 
 
Number of pages: 34 
Number of tables: 11 
Number of figures: 19 
 
 
 
 
 
  



S2 
 

S.1 Temporal convolution 
Temporal convolution with a Gaussian kernel was employed to process the original OMI-NO2 
satellite retrievals. 

[ ]( ) ( ) ( ) ( )
n n

O t I n W t n W t n= ⋅ − −∑ ∑        (1) 

where O(t) is the output value on the tth day iterating through the whole study period, I(n) is the 
original OMI-NO2 value on the nth day if available, and W(t-n) is the weight of I(n) in 
calculating O(t). W(t-n) is determined by the Gaussian kernel function: 

( ) ( )2 2( ) exp 2W t n t n σ − = − −           (2) 

where σ is the standard deviation of the Gaussian function, which is set to 60 days based on the 
sensitivity analyses considering the input completeness and output smoothness. 
 
 
S.2 Algorithm of random forests1 
For tree = 1 to 500: 

• Randomly draw a sample from the training data with replacement, and the sample size is 
the same as the training data; 

• Grow a tree by starting with a single node, and then repeat the steps below until only one 
observation presents in each terminal node: 

o Randomly select one third of the predictors; 
o Find the split that reduces the squared error the most; 

Average the predictions of all trees as the model output. 
 
 
S.3 Hourly-scaling approach 
The random forest-spatiotemporal kriging (RF-STK) model was used to predict the hourly NO2 
concentrations when the Aura satellite passed, which were then scaled to daily concentrations. 
The detailed procedures are as follows: 
(1) Train the RF-STK model to simulate the NO2 for the overpass hour of the Aura satellite; 
(2) Use the RF-STK model to predict the hourly NO2 for unmonitored areas; 
(3) Calculate the scaling factors (i.e., the ratio of observed hourly to daily NO2) for the 

monitoring sites; 
(4) Estimate the scaling factors for the unmonitored areas by using kriging interpolation; 
(5) Divide the hourly NO2 predictions by the estimated scaling factor to get the daily NO2 

predictions for the unmonitored areas.  
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Table S1 Coverage rates of OMI-NO2 satellite retrievals across China (%) 
Year(s) Spring Summer Fall Winter Annual 
2013 68.0 78.0 68.5 51.7 66.6 
2014 70.0 77.1 61.7 52.5 65.4 
2015 65.3 76.7 62.8 49.5 63.7 
2016 66.2 76.5 61.6 47.5 62.5 

2013-2016 67.4 77.1 63.6 50.3 64.6 
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Table S2 Correlation coefficient squares (R2) between the observed ambient NO2 concentrations 
and the OMI satellite-retrieved vertical column density of the tropospheric NO2  

Temporal Resolution Level-2 Level-3 Level-3 Conv.a 
Day 0.18 0.24 0.27 

Month 0.26 0.38 0.42 
Season 0.38 0.44 0.48 
Year 0.45 0.48 0.48 

Spatialb 0.53 0.53 0.52 
a OMI retrievals processed with the temporal convolution. 
b Multiyear averages, i.e., no temporal resolution. 
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Table S3 List of variable symbols and definitions 
Symbol Unit Variable definition Spatiala Temporala Convolutionb 
OMI molecule/cm2 OMI-retrieved tropospheric 

NO2 density 
0. 25°×0.25° Day Temporal 

DOY - Day of year - - - 
YEAR - Year - - - 
EVP mm Evaporation Point Day - 
PRE mm Precipitation Point Day - 
PRS hPa Atmospheric pressure Point Day - 
RHU % Relative humidity Point Day - 
SSD hour Sunshine duration Point Day - 
TEM ℃ Temperature Point Day - 
WIN m/s Wind speed Point Day - 
PBLH km Planetary boundary layer 

height 
0.625°×0.5° Day - 

ELV m Elevation 90m×90m None Spatial 
NDVI - Normalized Difference 

Vegetation Index 
250m×250m 8 Days Spatial 

POP people/km2 Population density 30"×30" None Spatial 
LU10 % Cultivated land area 30m×30m None Spatial 
LU20 % Forest area 30m×30m None Spatial 
LU30 % Grassland area 30m×30m None Spatial 
LU40 % Shrubland area 30m×30m None Spatial 
LU50 % Wetland area 30m×30m None Spatial 
LU60 % Waterbody area 30m×30m None Spatial 
LU80 % Artificial surface area 30m×30m None Spatial 
LU90 % Bareland area 30m×30m None Spatial 
LU100 % Permanent frozen land area 30m×30m None Spatial 
LU255 % Sea area 30m×30m None Spatial 
ROAD km/grid Road density Polyline None Spatial 
eBC Mg/grid Emission of black carbon 0.25°×0.25° Month Spatial 
eCO Mg/grid Emission of CO 0.25°×0.25° Month Spatial 
eCO2 Mg/grid Emission of CO2 0.25°×0.25° Month Spatial 
eNH3 Mg/grid Emission of NH3 0.25°×0.25° Month Spatial 
eNOx Mg/grid Emission of NO2 and NO 0.25°×0.25° Month Spatial 
eOC Mg/grid Emission of organic carbon 0.25°×0.25° Month Spatial 
ePM25 Mg/grid Emission of PM2.5 0.25°×0.25° Month Spatial 
ePMcoar Mg/grid Emission of PM-coarse 0.25°×0.25° Month Spatial 
eSO2 Mg/grid Emission of SO2 0.25°×0.25° Month Spatial 
eVOC Mg/grid Emission of VOC 0.25°×0.25° Month Spatial 
a Spatial or temporal resolution of raw data. 
b Temporal: OMI is processed with the temporal convolution. Spatial: these variables have 
accompanying variables processed with the spatial convolution. 
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Table S4 Descriptive statistics of the meteorological variables 

Variable Number of 
observations Unit Mean Standard 

deviation Median Interquartile 
range 

Evaporation 1202560 mm 2.7 2 2.4 2.6 
Precipitation 1140852 mm 2.7 9.5 0 0.6 

Atmospheric pressure 1219978 hPa 924 108 969 120 
Relative humidity 1219982 % 66 20 69 28 
Sunshine duration 1219032 hour 5.9 4.1 6.8 7.7 

Temperature 1220028 ℃ 12.5 11.9 14.4 16.9 
Wind speed 1219439 m/s 2.2 1.4 1.8 1.4 
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Table S5 Performance of the random-forest-spatiotemporal-kriging model (RFSTK) in 
predicting the ambient NO2 concentrations for China during 2013-2016 
Metrica Daily Monthly Seasonal Annual Spatial 
R2 0.62 0.65 0.68 0.68 0.73 
RMSE 13.3 10.2 9.0 7.7 6.5 
Slope 0.67 0.71 0.73 0.72 0.77 
RPE 39.5% 30.1% 26.2% 22.4% 19.9% 
MFB 0.066 0.044 0.037 0.029 0.027 
MFE 0.32 0.25 0.22 0.19 0.17 
MNB 0.27 0.19 0.18 0.07 0.06 
MNE 0.48 0.36 0.34 0.21 0.19 
a R2: coefficient of determination; RMSE: root mean square error (µg/m3); RPE: relative 
prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean 
normalized bias; MNE: mean normalized error.  
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Table S6 Prediction performance for data points with or without OMI-NO2 values prior to 
imputation by temporal convolutiona 

OMI-NO2 R2 Slope RMSE RPE MFB MFE MNB MNE 
Available 0.61 0.67 13.2 40% 0.07 0.32 0.27 0.48 
Missing 0.62 0.67 13.6 39% 0.06 0.32 0.26 0.47 

a R2: coefficient of determination; RMSE: root mean square error (µg/m3); RPE: relative 
prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean 
normalized bias; MNE: mean normalized error. These metrics are evaluated in the 10-fold cross-
validation. Approximately 65% of the data had OMI-NO2 values prior to the imputation.  
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Table S7 Number of NO2 monitoring sites within each cross-validation fold for each climate 
region  

Climate Regiona Stratified 
Samplingb 

Fold 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

Qinghai-Tibet Plateau Y 4 4 4 4 4 3 3 3 3 3 
N 3 2 3 4 5 2 2 6 2 6 

Subtropical Monsoon Y 87 87 87 87 87 86 86 86 86 86 
N 82 85 75 77 88 86 100 85 89 98 

Temperate Continental Y 7 6 6 6 6 6 6 6 6 6 
N 9 5 7 7 7 7 5 8 2 4 

Temperate Monsoon Y 66 66 66 66 66 66 66 65 65 65 
N 68 70 79 72 63 65 57 61 67 55 

Tropical Monsoon Y 4 4 4 4 4 4 4 4 4 3 
N 4 4 2 6 3 6 2 5 5 2 

a Please refer to Figure S10 for the map of these climate regions. 
b Y means random sampling stratified by climate regions, with cross-validation results of 
R2=0.61, Slope=0.67, RMSE=13.4, RPE=40%, MFB=0.06, MFE=0.32, MNB=0.26, MNE=0.48; 
and N represents non-stratified random sampling, with cross-validation results of R2=0.62, 
Slope=0.67, RMSE=13.3, RPE=40%, MFB=0.07, MFE=0.32, MNB=0.27, MNE=0.48. 
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Table S8 Comparisons of the statistical models in predicting daily NO2 for China during 2013-
2016 with the same setting of 10-fold-cross-validation 

Metrica LRb STKb LR-STKb RF0
b RFb RF-STKb RF-STKh

b 
R2 0.38 0.60 0.64 0.60 0.61 0.62 0.48 

Slope 0.38 0.57 0.62 0.63 0.64 0.67 0.67 
RMSE 16.8 13.5 12.9 13.5 13.4 13.3 16.0 
RPE 50% 40% 38% 40% 40% 40% 48% 
MFB 0.11 0.10 0.08 0.09 0.08 0.07 0.05 
MFE 0.40 0.33 0.31 0.33 0.32 0.32 0.36 
MNB 0.40 0.34 0.29 0.30 0.29 0.27 0.28 
MNE 0.64 0.53 0.49 0.50 0.49 0.48 0.53 

a R2: coefficient of determination; RMSE: root mean square error (µg/m3); RPE: relative 
prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean 
normalized bias; MNE: mean normalized error. Bold: the best performance of each evaluation 
metric. Lower values are better for each metric except R2 and slope. 
b LR: Linear Regression model; STK: Spatiotemporal Kriging model; LR-STK: Linear 
Regression-Spatiotemporal Kriging hybrid model; RF0: Random Forest model without variable 
selection; RF: Random Forest model with variable selection; RF-STK: Random Forest-
Spatiotemporal Kriging model; RF-STKh: Random Forest-Spatiotemporal Kriging model with 
hourly scaling. 
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Table S9 Performance of the previous statistical models in predicting NO2 
Reference Model Study Area Study 

Period 
Validation Metric 

2 Satellite-based 
LUR; lasso 

Australia 2006-
2011 

Fitting R2=0.81 
(annual) 
R2=0.76 

(monthly) 
3 Mixed effects 

model 
New England 
region, United 

States 

2005-
2010 

10-fold sample-
based cross-
validation 

R2=0.79 (daily) 

4 LUR Canada 2006 Fitting R2=0.73 
(spatial) 

5 LUR Western Europe 2005-
2007 

Fitting R2=0.50 
(spatial) 

6 LUR Netherlands 2007 Fitting R2=0.84 
(annual) 

7 
 

LUR Changsha, 
China 

2010 Leave-25%-out-
validation 

R2=0.67 
(annual) 

8 LUR Shanghai, China 2008-
2011 

Leave-one-out-
cross-validation 

R2=0.75 
(annual) 

9 LUR Pearl River 
Delta, China 

2013-
2014 

Leave-one-out-
cross-validation 

R2=0.71 
(annual) 

10 LUR Western Europe 2009-
2010 

Hold-out-
validation on 20% 
of monitoring site 

R2=0.60 
(annual) 

11 
 

LUR Seoul, Korea 2003 Fitting R2=0.95~0.98 
(seasonal) 

12 LUR; Lasso 
regression 

Global 2011 Bootstrap 10% 
cross-validation 

R2=0.53 
(annual) 

13 LUR; monthly 
scaling 

Contiguous 
United States 

2000-
2010 

Fitting R2=0.79 
(spatial); 
R2=0.84 

(monthly) 
14 LUR-UK; 

partial least 
square 

Contiguous 
United States 

1990-
2012 

20-fold site-based 
cross-validation 

R2=0.85 
(annual) 

15 LUR; 
Stepwise 

multivariate 
regression 

Contiguous 
United States 

2006 Leave-10%-out 
validation 

R2=0.76 
(annual) 
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Table S10 Comparisons of the random forest and the linear regression models in predicting NO2 
for temporal extrapolationa 
 
Metricb 

Daily NO2  Spatial NO2
c 

Linear Regression Random Forest  Linear Regression Random Forest 
R2 0.39 0.56  0.61 0.83 
Slope 0.39 0.54  0.62 0.81 
RMSE 16.8 14.3  7.9 5.2 
RPE 50% 42%  24% 16% 
MFB 0.10 0.08  0.03 0.01 
MFE 0.39 0.33  0.21 0.13 
MNB 0.38 0.29  0.08 0.03 
MNE 0.63 0.50  0.24 0.14 
a The two models are trained with the data of 2014 and 2015, and then are used to make 
predictions for 2013 and 2016. The two models have the same set of predictor variables. 
b R2: coefficient of determination; RMSE: root mean square error (µg/m3); RPE: relative 
prediction error; MFB: mean fractional bias; MFE: mean fractional error; MNB: mean 
normalized bias; MNE: mean normalized error. Bold: the best performance of each evaluation 
metric. Lower values are better for each metric except R2 and slope. 
c Two-year averages, i.e., no temporal resolution. 
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Table S11 Population-weighted ambient NO2 concentrations (mean ± standard deviation; µg/m3) and temporal trends (µg/m3/year) 
during 2013-2016 for the main economic zones in China 
Economic Zonea Spring Summer Fall Winter Annual Trend Trend 95% CI Trend P 
Beijing-Tianjin Metro 46.8 ±   7.4 35.5 ± 6.2 54.1 ± 7.4 62.0 ±   7.1 49.5 ±   6.7 -0.61 (-1.82, 0.60) =0.32 
Pearl River Delta 41.7 ±   9.1 29.4 ± 6.8 39.3 ± 7.8 49.9 ±   9.4 40.1 ±   7.9 -1.37 (-2.19, -0.55) <0.01 
Sichuan Basin 30.4 ± 10.9 23.6 ± 9.3 29.6 ± 9.9 38.0 ± 10.9 30.4 ± 10.1 -1.10 (-1.44, -0.76) <0.01 
Yangtze River Delta 40.6 ±   8.2 28.3 ± 6.0 39.8 ± 7.2 50.2 ±   8.5 39.7 ±   7.3 -1.03 (-1.62, -0.44) <0.01 
a The four economic zones are located in North, East, South, and Southwest China, respectively. 
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Figure S1. Average daily (black line) and monthly (blue line) NO2 concentrations across all the 
monitoring sites for China during 2013-2016.  
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Figure S2. Spatial distribution of the NO2 monitoring sites in China during 2013-2016. The basemap of population density data for 
2015 is obtained from the Gridded Population of the World (GPWv4; 30 arc-second resolution).16  
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Figure S3. Average diurnal pattern in NO2 concentrations across all the monitoring sites for 
China during 2013-2016. Two peaks appeared at 8am and 21pm. 
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Figure S4. Frequency distributions of the numbers of NO2 observations by population density. 
The population density of 400 people/km2 is indicated by the red line. 
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Figure S5. (a) Overall and (b) seasonal number of NO2 observations per monitoring site during 
2013-2016 for China. The overall mean±standard deviation was 1008±344. The seasonal 
mean±standard deviation values were 258±83, 258±83, 260±85, and 246±79 for spring, summer, 
fall, and winter, respectively.  
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Figure S6. Overlay of the 0.25° grid (blue line) on the 0.1° grid (black dashed line).  



S20 
 

 
Figure S7. Boxplots of the meteorological variables: (a) evaporation (mm), (b) precipitation 
(mm), (c) atmospheric pressure (hPa), (d) relative humidity (%), (e) sunshine duration (hour), (f) 
temperature (℃), and (g) wind speed (m/s).  
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Figure S8. (a) Root mean square error (RMSE) as a function of the number of trees for the 
random forest model with the selected predictors. The RMSE is evaluated with 10-fold cross-
validation on a random subset (100,000 samples) of the training data. The error bars represent 
the standard errors across the 10 folds. (b) Computing time for different numbers of trees in this 
evaluation, with a fitted regression line.  
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Figure S9. Evolution of cross-validation RMSE (µg/m3) and R2 for the random forest submodels 
through the variable selection process. Refer to Table S3 for the detailed descriptions of the 
variables.  
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Figure S10. Major climate regions of China. 
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Figure S11. Performance of the random-forest-spatiotemporal-kriging (RF-STK) model in 
predicting daily NO2 by regions, years, and seasons. The mean and standard deviation of the 
mean normalized error (MNE) over all of the 10 cross-validation folds are presented. The 
numbers of monitoring sites in 2013, 2014, 2015, and 2016 are 744, 1022, 1612, and 1604, 
respectively. The annual average numbers of monitoring sites in Central, East, North, Northeast, 
Northwest, South, and Southwest China are 173, 200, 256, 125, 112, 239, and 140, respectively. 
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(a) Random Forest          (b) Random Forest-Spatiotemporal Kriging 

 
Figure S12. Average NO2 during 2013-2016 predicted by (a) the random forest model and (b) 
the random-forest-spatiotemporal-kriging model. 
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Figure S13. Partial dependence plots for the random forest model, indicating the effects of the 
predictor variables (a) OMI, (b) WIN, (c) TEM, (d) DOY, (e) POP, (f) eCO-sc, (g) PRS, (h) 
PBLH, (i) eBC-sc, (j) eNOx-sc, (k) RHU, and (l) ePM25-sc on the NO2 predictions. The rug plot 
indicates the data density. Note that the partial dependence estimation tends to be unreliable at 
the two ends of horizontal axis due to their low data densities. Refer to Table S3 for the 
descriptions of the predictor variables. 
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Figure S14. Correlations among the geographic factors and NO2. The Spearman’s rank 
correlation coefficients are used due to the prevalence of nonlinearity. Refer to Table S3 for the 
detailed descriptions of the variables.  
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Figure S15. Daily surfaces of the ambient NO2 concentrations across China from March 15 to 
March 20, 2016, which are examples of daily predictions by the random forest-spatiotemporal 
kriging (RF-STK) model. 
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Figure S16. Vertical column density (molecules/cm2) of tropospheric NO2 retrieved from the 
OMI Level-3 product and processed by temporal convolution for (a) spring, (b) summer, (c) fall, 
and (d) winter during 2013-2016. 
 

  

(a) (b) 

(c) (d) 
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Figure S17. Population-weighted annual averages of NO2 predictions for the major regions and 
the whole nation of China.  
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Figure S18. Observations (black dots) and predictions (blue lines) of daily NO2 during 2013-
2016 for (a) Beijing, (b) Shanghai, (c) Guangzhou, and (d) Chengdu, which are the major cities 
in the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, the Sichuan Basin regions, 
respectively.  
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        (a)                 (b) 

 
Figure S19. Scatterplots showing the relationship between the population density and the 
estimated average ambient NO2 concentrations for 2013-2016 in China. The population density 
is at (a) original and (b) logarithm scales. 
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