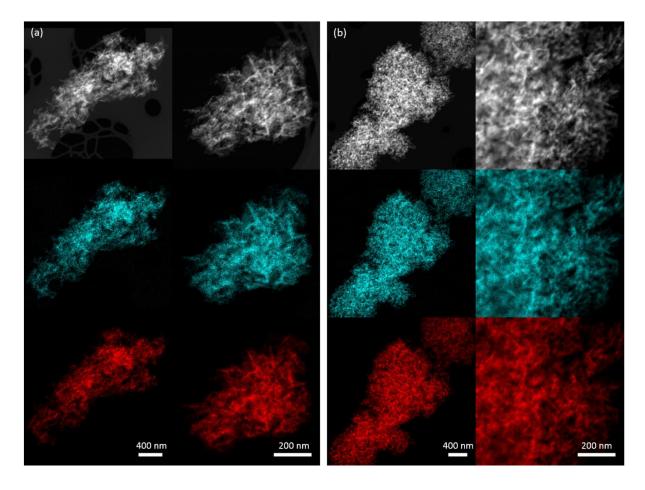
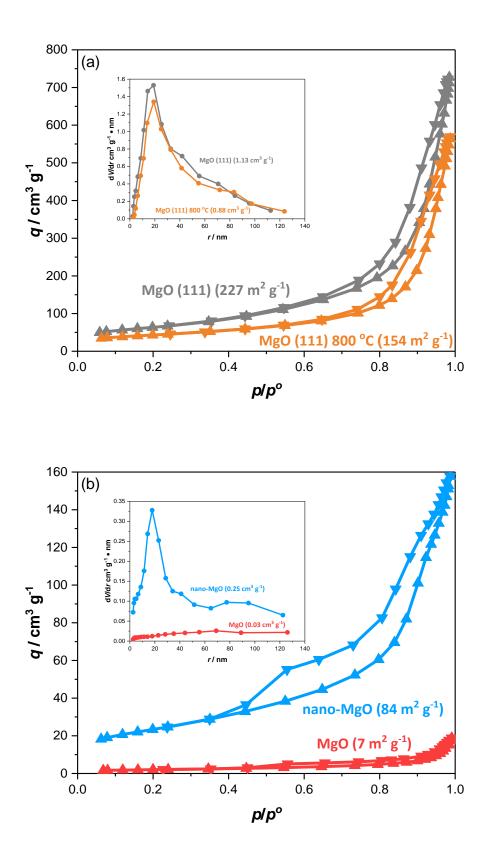
SUPPORTING INFORMATION

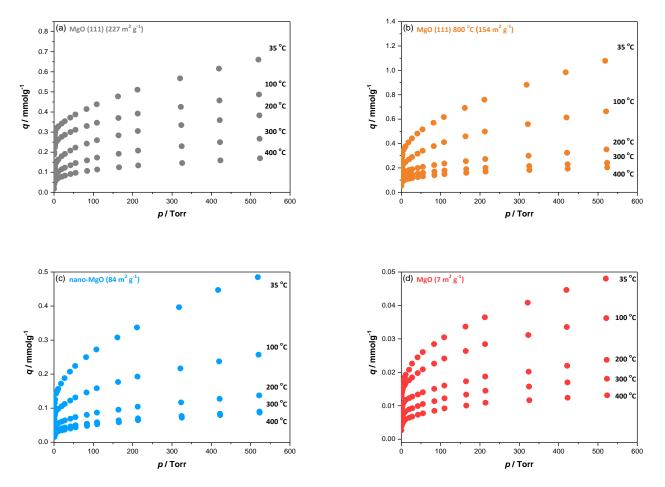
Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet


Greg A. Mutch,^{*,⁺,⁺} Sarah Shulda,[§] Alan J. McCue,[†] Martin J. Menart,[§] Cristian V. Ciobanu,[∥] Chilan Ngo,[§] James A. Anderson,[†] Ryan M. Richards[§] and David Vega-Maza[†]

⁺School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.


\$Chool of Engineering, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom.

§Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States.


||Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States.

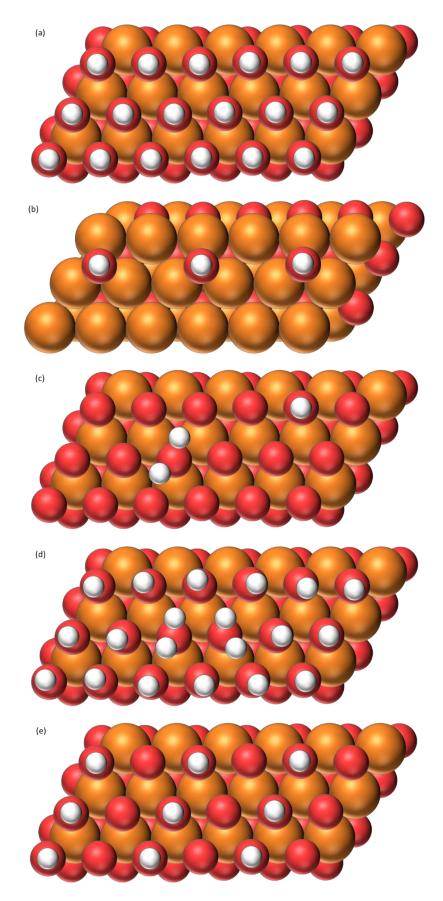

Figure S1. Scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) for (a) MgO(111) and (b) MgO(111) 800°C. Morphology and compositional homogeneity remain consistent after heat treatment. (STEM = White, O = Blue, Mg = Red).

Figure S2. Nitrogen adsorption-desorption isotherms and pore size distributions (inset) for (a) MgO(111) and MgO(111) 800°C and (b) nano-MgO and MgO. Specific surface area values, as determined by the BET method are inset as well as pore volumes as determined by the BJH method.

Figure S3. CO_2 adsorption isotherms for (a) MgO(111), (b) MgO(111) 800°C, (c) nano-MgO and (d) MgO with specific surface areas inset. T_{ads} = 35, 100, 200, 300 and 400°C and pCO₂ = 0.05 – 520 Torr.

Figure S4. Top view configurations of hydroxyl and water on a 6x3 MgO(111) surface cell for DFT calculations. (a) 100% H-covered O-terminated surface, (b) low coverage of OH Mg-terminated surface, (c) one water and one OH O-terminated surface, (d) two waters on otherwise H-covered O-terminated surface and (e) 50% H-covered O-terminated surface. (Mg = Orange, O = Red and H = White).

Table S1. Basic site quantification for MgO(111) and MgO(111) 800°C, as determined by CO₂-TPD, with weak ($T_d < 120^{\circ}$ C), intermediate ($T_d = 120 - 275^{\circ}$ C) and strong ($T_d > 275^{\circ}$ C) basic sites, as well as total.

Basic sites at desorption temperature (T_d) [µmol g ⁻¹]				
Sample	< 120 [°C]	120 – 275 [°C]	> 275 [°C]	Total
MgO(111)	121	184	52	357
MgO(111) 800°C	122	240	55	415