
1 

 

Supporting Information 

 

Model for the Synthesis of Self Assembling Template-Free Porous 
Organosilicas 

 

Brian K. Peterson*, Mobae Afeworki, David C. Calabro, Quanchang Li, and Simon C. Weston  

Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale, NJ  08801 

 

 

* corresponding author: brian.peterson@exxonmobil.com; petersbk@yahoo.com 

 

List of Contents 

Development of Solvent Index 

Hydrolysis and Condensation 

Rigidity Theory and the Rigidity Transition 

Mechanical Properties 

Reaction Extent 

  



2 

 

 

Development of Solvent Index 

Our primary goal here is to relate the solvent index, introduced in the Results and Discussion, to the amount of solvent 

remaining in the gel when the molecular network reaches the rigidity transition. This amount of solvent is closely related 

to the eventual pore volume and surface area in the dried solid, so the solvent index becomes a useful correlating variable 

for these textural properties. The extent of the condensation reaction (e.g. number of bridging bonds formed) is directly 

related to the connectivity of the network. The connectivity of the network at the transition is found by application of the 

concepts of constraint counting or rigidity theory and is used to define the solvent index.  The amount of solvent remain-

ing is related to the extent of reaction through an equilibrium assumption. Hence, the solvent index is related directly to 

the amount of solvent remaining at the point when rigidity is reached and therefore to the surface area and porosity of 

the dried solid. 

 

Hydrolysis and Condensation 

For the high H2O/Si syntheses considered in this work, we will ignore the presence of ethanol hydrolyzed from ethoxy 

groups on the precursor molecules. In that case, consider generic hydrolysis and condensation reactions in the solgel sys-

tem: 

2≡SiOH ⇄ ≡Si-O-Si≡ + H2O 

We assume that this reaction is at or near equilibrium at some time in the gelation and/or drying stages since significant 

reaction progress has already occurred and since the temperature and hence reaction rates are increased during drying. 

For purposes of developing a simple theory, all silanols (regardless of the other ligands on the Si) are assumed to have the 

same kinetic and thermodynamic properties. We can then write a single equilibrium constant  
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which applies everywhere. Solving for the activity of water we have: 
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Now assume the water in the pores is in equilibrium with low pressure vapor phase (approximately pure) water (
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
) where y is a gas-phase mole fraction,  is a fugacity coefficient (not to be con-

fused with porosity as used elsewhere), and also introduce activity coefficients () and molar concentrations (ci) for the 

components in the wet gel ( iii ca 
): 
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where Po is the standard state pressure. In calculations of the extent of reaction, it is useful to track mole ratios per silicon 

rather than in molar concentrations so we write the above as 
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where M is the total mass, V is the system volume, and MW’ is the mass per mole of silicon atoms of all the species which 

derive from the precursor molecules (the solid gel and any remaining hydrolyzed precursor molecules or fragments in 

solution; nSi = M/MW’). Upon rearrangement and defining the term in square brackets as w: 
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We can see that w is directly related to the state of condensation of the system (nSiOH, nSiOSi) and indirectly related to the 

amount of water in the gel (nH2O/M) or to the pressure of the gas-phase water in equilibrium with the gel through the 

above equation. Through the kinetic definition of K, w is also directly proportional to the ratio of the forward and reverse 

rates of reaction at the specified state. The first part of Equation (S5) is in the form of a water sorption isotherm 

  OHOH PfMn
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
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For convenience we define an index, W, for a given precursor that is the ratio of w for that precursor at a specified state to 

that of a standard precursor at some other defined standard state: 
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With this definition, we can write 
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We further assume that the square-bracketed term on the right-hand-side is approximately unity when the system of in-

terest and the standard system are at conditions not too different from one another. We then have: 
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The state of the system of the precursor of interest and of the standard precursor will be defined below. 

 

Rigidity Theory and the Rigidity Transition 

Rigidity theory offers a method to identify the state of the gel corresponding to the critical level of strength. Consider a 

system of objects, each with several degrees of freedom of movement, and the constraints imposed on those movements 

by connections between the objects. In an average, mean-field, or generic sense, when the number of constraints reaches 

or exceeds the number of degrees of freedom, the collection of objects is fully constrained—it can no longer support mo-

tions of one part of the object relative to other parts. This is true unless some of the constraints are redundant or other-

wise ineffective. For application to amorphous networks of organosilicates created from molecules in solution, we expect 

the connections to be evenly spread throughout the network so that it is not the case that some local regions will be over-

constrained and others very floppy. In what follows, we follow closely the work of Gupta (11) who formulates the rigidity 

theory in terms of the connections between rigid polytopes rather than the more usual formulation in terms of atoms. 

 

Consider a collection of M rigid objects, each of which might represent a silicate tetrahedron. For simplicity, we will here 

only consider cases where the objects are identical. Each object has characteristic numbers of translational and rotational 

degrees of freedom; nt and nr. For the usual case of three dimensional non-linear objects in 3D space, nt = nr = d = 3, where 

d is the dimensionality. For the collection of objects, there are a total of 
 rtT nnMN 

 degrees of freedom. The col-

lection of rigid objects taken as a single entity has rtT  
 degrees of freedom; 

6T  in the typical 3D case.  
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Each object has a number of vertices V which can be merged with vertices from other objects to form a compound object 

or network. When vertices from two objects merge, they form a “joint”. The most relevant example is two SiOH groups 

(vertices) condensing to form an SiOSi corner-sharing bridge (joint). In general there can be joints that connect j objects 

and there are Nj of each of these types; For a bridging oxygen, j = 2, and for a terminal SiOH, j = 1. The total number of 

joints in the network is 


j

jNN

. 

The average number of objects connected per joint of the entire network is 

NjCC
j

j
. If a joint connects j ob-

jects, then it accounts for j vertices from those objects, so the sum, over all objects of all vertices in each object equals the 

sum, over all joints, of the number of objects connected by the joint: MV = CN. 

 

When vertices from j objects are merged to form a joint, d(j-1) translational constraints are imposed on the motion of the 

system. The total number of such constraints due to the joints with j>1 is: 
)1( CNnt . We also suppose that for each 

joint connecting j objects, there are nj other constraints imposed (e.g. bond bending constraints). The total of these is: 

NnNnN
j

jj  
. 

In order to find the net structural (internal) degrees of freedom of the system, we subtract from the total degrees of free-

dom, the number of constraints and the degrees of freedom of the entire network of objects. 
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where we have used MV = CN. Eliminating the number of joints in favor of the number of objects gives an equivalent ex-

pression in terms of the number of objects, 
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For large systems (N, M →∞), the final terms within the brackets vanish. 
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We seek the state of connectivity of a large system such that the structural degrees of freedom vanish. The system is then 

incipiently rigid. Setting F/M = 0 or F/N = 0, we find: 
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For a large 3D system of tetrahedra with vertexes at the corners, nt = nr = 3 and V = 4 so that: 
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If there are no angular constraints around the joints (n = 0), then C* = 2. As shown by Gupta (11), this is equivalent to the 

result of Phillips (19) which was used to justify why SiO2 so easily forms a glass from the melt; when fully connected (each 

O atom connects 2 SiO4 tetrahedra; C = 2), the system lies on the rigidity transition. This formulation is appropriate at 

high temperatures near the melting transition for silica at which the SiOSi bond angle is effectively unconstrained. 

 

We now form a hardness index (12) which represents the average connectivity of the joints in excess of that required for 

the rigidity transition; h = C – C*. When h < 0, the material is expected to be floppy and when h > 0, the material is ex-

pected to be rigid. For materials with real bond constraints rather than idealized infinitely stiff constraints, when h > 0, a 

finite modulus (and other mechanical properties) should be expected and it should increase as the hardness index in-

creases (12). If we restrict our application to systems with joints that have either connectivity 1 (terminal joints such as –

OH or –CH3) or connectivity 2 (bridging O or bridging –CH2-), then 

 jjCxC

 where the fraction of joints with con-

nectivity j is xj. The average number of angle constraints is similarly

 jjnxn 

. With these definitions, the hardness 
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The hardness index is seen to be in the form of a linear group-contribution method where the group parameter for a joint 

with connectivity j is 
jjj nC 

3
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Bridging joints in the systems considered in this work consist of oxygen atoms, methylene groups, or the para-benzene 

group. For both oxygen and the organic bridging groups, we use the usual formula (2C-3) (11) for the number of bond 

bending constraints, yielding 
1n

. Siloxy ether chains are known to be more flexible than those associated with the 

other bridging groups (20) and a temperature-dependent, bridging group specific, n should provide a more accurate de-

scription (21, 22), but we ignore that possibility in this work as have most previous studies. For purposes of counting con-

straints, we count the bridging phenyl group as equivalent to a methylene group. 

 

Given the values for jC
and jn for each type of joint being considered,

1j  for the terminal groups –OH and –CH3 

and 
32j  for –O-, -CH2-, and –C6H4-. For the joint types considered in this work, the parameters related to the 

hardness index are given in Table S1 below. 

Table S1: Joint parameters for calculating rigidity index 

 OH CH3 O CH2 Ph 

Connectivity 1 1 2 2 2 

Angle Constraints 0 0 1 1 1 

 -1 -1 2/3 2/3 2/3 

 

For a silicate containing bridging (B) and terminal (T) groups (joints), the composition is SiB2-y/2Ty. From Equation (S13) 

and  from Table S1, h = (2/3)xB – xT. At h = 0, this becomes xB/xT = nB/nT = 3/2, which combined with the composition 

(nB/nT = (2-y/2)/y) gives 

nB/nSi = 3/2 = 1.5  (S14)  

The prediction from the simple form of rigidity theory is that silicate materials containing bridging groups similar to -

CH2- or –O- and terminal groups such as -OH and -CH3 will reach the rigidity transition when the number of bridging 

groups is 1.5 times the number of silicon atoms. 

 

Mechanical Properties 

We follow Boolchand et al. (12) in positing that the mechanical properties (e.g. bulk modulus, yield stress) of nonporous 

materials with variable connectivity are functions of the hardness index: 
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where the subscript fc indicates “fully connected” and f(1) = 1. Boolchand et al. found that for the nano-indentation hard-

ness of carbon and silicon carbide films, f was closely approximated by a linear or power law form.  

 

For the effect of porosity on the mechanical properties of a porous material we use a Gibson and Ashby (14) type expres-

sion: 
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Combining these we have: 
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For some yield stress,

*

gel
, the gel will be able to resist the capillary forces causing collapse. There will then be a curve in 

(h,) where 

dry
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 that separates regions where the gel is stable or unstable with respect to collapse: 
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Reaction Extent 

For hydrolyzed organo-alkoxysilane precursors, we can write equations for the number of each type of bridging or termi-

nal group as a function of an extent of reaction, n, and stoichiometric coefficients 
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where the organic groups are assumed inert under the conditions considered in this work. 
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For given precursors and extents of reaction, the hardness index as defined in Equation (S13) and the W index defined in 

Equations (S4-6) can be calculated. For a given hardness index, chosen for its influence on the mechanical properties of 

the gel, the extent of reaction can be determined, perhaps numerically, and then W calculated. 

 

For the precursors considered in this work, the initial numbers of each type of joint (per silicon atom), necessary for cal-

culating the composition and hardness index as a function of the extent of reaction, are given in Table S2. These are used 

to determine the composition at the rigidity transition which is then used to calculate W. 

 

 

Table S2: Initial number of joint types for calculating extent of reaction 

 H2O OH CH3 O CH2 Ph 

TEOS 90 4 0 0 0 0 

MTES 90 3 1 0 0 0 

3R 90 2 0 0 1 0 

3Me3R 90 1 1 0 1 0 

PhB 90 3 0 0 0 ½ 

MB 90 3 0 0 ½ 0 
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