Supporting Information

Recrystallization on Alkaline Treated Zeolites in the Presence of Pore-Directing Agents

Eddy Dib,[†] Hussein El Siblani,[†] Shrikant M.Kunjir,[†] Aurelie Vicente,[†] Nicolas Nuttens,[‡] Danny Verboekend,[‡] Bert F. Sels,[‡] and Christian Fernandez^{*,†}

†Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14000 Caen, France

‡Department M2S, K.U. Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium

E-mail: christian.fernandez@ensicaen.fr

Figure SI-1: Powder XRD patterns of the beta zeolite taken before (a) and after (b) the alkaline treatments in presence of tetra-propyl ammonium ions. These patterns were obtained on a STOE Stadi P instrument in transmission mode using CuK_{α} radiation. The crystallinity ratio was determined from the intensity of the diffraction peak at approximately 22.8°.

Figure SI-2: Nitrogen isotherms at 77 K taken before (a) and after (b) the alkaline treatments in presence of tetra-propyl ammonium ions. Nitrogen-sorption measurements were executed on a Micromeritics TriStar 3000 instrument. Prior to the sorption experiment, the samples were degassed overnight under a flow of N_2 with heating to 573 K (5 K.min⁻¹). The *t*-plot was used to distinguish between micro- and mesopores.

Figure SI-3: NMR spectra of HP 129 Xe adsorbed on alkaline treated BEA zeolite recorded at variable temperature. The main resonance corresponds to xenon adsorbed in the BEA micropores. On the expansion of the spectra (factor $\times 50$), a small peak on the left (downfield) of the main resonance appears at temperature below 270 K and is attributed to the presence of MFI in the sample. The resonances are shifted with temperature due to a different equilibrium between the surface adsorbed and the gas phase xenon that are in a regime of fast exchange. Note that the narrow line due to the gas phase is at 0 ppm (reference of chemical shift) and thus does not appear on these spectra. It can be shown on Figure 4 in the main text.