Supporting Information

Halbach Effect at the Nanoscale from Chiral Spin

Textures

Miguel A. Marionil'*, Marcos Penedo’, Mirko Bacani’, Johannes Schwenkl’z, Hans J. Hugl’3

! Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Diibendorf, Switzerland.
2 Center for Nanoscale Science and Technology, National Institute of Standards and Technology,
Gaithersburg, MD 20899, United States.

3 Department of Physics, University of Basel, CH-4056 Basel, Switzerland.

E-mail: miguel.marioni@empa.ch

Quantitative measurements by Magnetic Force Microscopy (MFM)

Contrast formation in the MFM ideally is the result from the interaction of an extended
magnetic tip with the stray field gradients of the sample. For convenience the process is
described in coordinates k = (k,, k,) of the 2D reciprocal-space for the scan plane, and
direct space for the tip-sample distance z along the scan plane normal. It can be shown® that
the MFM signal Af(k,z) measured at tip-sample distance z for a stray field H,(k,z)

depends on the instrument calibration function ICF (k, z) as

dH,
() (1

Af (k,2) = ICF (k,2) —

The ICF (k, z) includes terms for the geometry and orientation of the cantilever, as well as
its mechanical and magnetic properties. Importantly, it includes the information on the

distribution in space of the magnetic charges of the MFM tip.

Calibrating the instrument or the tip is essentially an inversion of Equation (1). We
determine the ICF(k,z) from 2601 MFM scans of domains with narrow-wall through-

thickness perpendicular domains from a (Cog enm/Pt1.0nm)xs thin film multilayer. All MFM Af-



images have been acquired at the same tip-sample distance of 12 nm, with maximum
departures of 0.5 nm. Recall that stray fields of a thin film samples are subject to so-called
distance losses*?, which describe a rapid decrease with distance of the field amplitude for
high spatial frequencies in the field (exponential factors of —k - z). The ensuing unequal
degradation of the SNR for high and low spatial frequencies is a practical restriction of the
usefulness of Eq. (1) for high frequencies, i.e. small magnetic features. A further evident
difficulty connected to distance losses is that the measured amplitudes vary strongly with
distance, so that maintaining stability of the scan plane is essential. We utilize a distance
z = 12 nm that ensures a useful SNR for wavelengths as small as 20 nm and still ensures a
moderately small signal from the sample topography, when scanning at constant average
height. For tip-sample distance control we rely on capacitive excitation of the second flexural
cantilever oscillation mode *. With this the tip-sample distance can be kept constant within

to £0.5 nm over several hours.
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Figure 1: Distance loss and calibration function. a Schematic of the stray fields from magnetic domain
structures with characteristic features of different wavelength. Stray fields from wider (1) features’ penetrate
deeper into space than stray fields from narrow features A. b Sensitivity of the tip for different spatial

wavelengths of the z-derivative of the z-component of the magnetic stray field.

Stray field components

Because the MFM scans a space devoid of sources of magnetic field, in practice we can write
the latter as the gradient of a magnetic potential, H(r) = —V¢,,(r), where ¢,,, satisfies the

Laplace equation. For definiteness we assume the sources of the stray field (provided by the



sample) are described by a boundary condition on the xy plane, parallel to the scan plane
located at distance z from the boundary. In the 2D Fourier space utilized in the previous

section, this leads to the convenient expression

H(k, z) = (iky, iky, k)P (K, 2), (2)

and therefore also to

H(k, 2) = (—i%, -2, D)H,(k 2). (3)

Consequently, the measurement of the z-component of the stray field provides the
remaining components as well, and implies that if ICF (K, z) is known the MFM can measure

the stray field vector.

Field from a given magnetization pattern

For a thin film extending on the xy plane and perpendicular to if from z =-d to z = 0 and
with through-thickness homogeneous magnetization, the stray field for z> 0 can be

written:

H,(k, z) = % (1 — e~kd)g=kz (a(k) + %k)) (4)

where the factors e %%

and (1 —e %) are the distance- and thickness-loss factors,
respectivelyz’a, and the surface and volume magnetic charge densities are defined as is
customary (o0 = M-Z, p = V-M). Note that the magnetic surface charges arise from the
boundary conditions of the magnetization at the top and bottom surfaces of a magnetic thin
film, whereas the volume charges arise from the divergence of the magnetization inside the
film, i.e. from that of the Néel walls. For the multilayer samples studied here sum of the
fields arising from each Co-layer was calculated. The magnetization of the Co layer was
chosen to obtain the total magnetic moment of the sample measured by VSM. Because all

magnetic moment was attributed to the Co layers, a polarization of the Pt layers could be

neglected.



Magnetization pattern from domain pattern measurements

The magnetization pattern (i.e., essentially, 0 = M - Z) corresponding to a domain pattern
measurement is found by first discriminating the frequency shift values that are above or
below the level of the domain wall center. This yields a binary pattern, which may have
artifacts at the center of large domains, where on account of the thickness loss factor the
field can dip below the noise level. These artifacts are simple to remove. Subsequently, the
pattern is scaled to the measured saturation magnetization, Mc, = 653.6 kA/m. The domain
wall profiles® are embedded in the binary patterns in Fourier space, by replacing the sharp
steps with the Fourier transform of a Bloch profile, calculated from A = 16 pJ/m, K, = 414

kJ/m? (obtained from VSM).
Skyrmion Profiles and Dzyaloshinskii-Moriya interaction determination

For the calculation of the skyrmion spin profiles we use the functional

oM\® 1
w=Z (6_9?) ~ BMZ =M -Hoy — M- Hy + 0p (5)
L

in which the external- and demagnetization fields H,,; and H; have been reduced with
Hp, =D?/AK (D is the DM interaction coefficient, K the anisotropy energy and A the

exchange stiffness). The anisotropy constant is reduced to ,6’~ = AK/D?, and the DM

oM,

oM om oM
o T M M T = M2

ox Z ax Y oy

interaction expressed as wp = —D [Mx

For our finite thickness film H; is non-local and cannot be replaced with the local
approximation H,; = —M for infinitesimally thin- or H; = 0 for infinitely thick media. For a

through-thickness homogenous magnetization pattern M., containing a skyrmion we

calculate a constant factor « iteratively from o = —fco  —0522 such that over

tCo+tnon—mag

the multilayer volume V:

1 1
Ef a’Mc, M, dv = _Ef M, -H,dv (6)
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where M, is the magnetization distribution of the stack of Co layers, i.e. it is equal to M,
inside the Co layers and is set to zero elsewhere in the film. We use this to replace
H,; = —a’M in Eq. (2) and numerically solve the Euler equation resulting® from the energy

functional (5) assuming cylindrical symmetry.

From the resulting D-dependent skyrmion profiles (Figure 3a of the main text) the z-
component of the field can be calculated and compared with measurement by convolution
with the tip-calibration function (1). In the example described in the main text, this yields a

value of D = +3.41 + 0.01 mJ/m? at the location of the skyrmion.

Additional thin film multilayer systems

In Figure 2 we demonstrate the Halbach magnetization structure in chiral Pt/Co/CoNi/Ni/Pt
and Pt/Co/CoNi/Ni/Ag multilayers. For reference, we sputter-deposit achiral Pt/Co/Pt-based
multilayers (Fig. 2a), for which D = 0. At this thickness, the balance of domain wall and
magnetostatic energy leads to the stabilization of large domains with about the same
domain wall contrast on either side of the film (Figures 2d, g, and corresponding sections j,

m).

The Pt1,m/C00.4nm/NiC0og.4nm/Nio.anm/Pto.anm multilayer (Fig. 2b) with an expected D < 0 yields
domains of ~250 nm width. They result in domain contrast of 9.17 Hz at 12.0 * 0.5 nm
(Figures 2e,k). Measuring at the same distance to the opposite side of the multilayer (which
amounts to the reverse stack and D < 0), shows a contrast of 6.35 Hz (Figures 2h,n). There is
thus an amplification of 1.44 or an attenuation to 0.69, respectively, upon going from the

bottom to the top side, or vice versa.

A similar observation is made for Pt1,m/C00.4nm/NiC00.anm/Nio.4nm/Ago.anm Multilayers (Fig. 2c).
They have slightly larger domain size (~350 nm). Measuring on the top (Ni/Ag-) side results
in domain contrast of 17.85 Hz at 12.0 + 0.5 nm (Figures 2f,I). Measuring at the same
distance to the opposite side of the multilayer results in a contrast of 10.54 Hz (Figures 2i, o),

so that the amplification (attenuation) factor is 1.69 (0.59).



Note that although the domains are of the order of 100 nm, the film thickness is an order of
magnitude smaller, and consequently the amplitude ratio is smaller than the simulation

results from Figure 1 in the main text.
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Figure 2: Halbach effect in Pt/Co/CoNi/Ni/X-based multilayer systems. a Construction schematic of the
reference achiral Co/Pt multilayer. b Schematic of the chiral multilayer with X = Pt. ¢ Schematic of the chiral
multilayer with X = Ag. d-f Frequency-shift measurements corresponding to the multilayers a-c, respectively, at
124+0.5 nm distance to the upper film surface. g-i Frequency-shift measurements corresponding to the
multilayers a-c, respectively, at 12+0.5 nm distance below the bottom film surface. j-I Sections across the black

lines in d-f. m-o Sections across the black lines of g-i.
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