Supporting Information

Saturated Vapor-assisted Growth of Single-Crystalline Organic-Inorganic Hybrid Perovskite Nanowires for High-performance Photodetectors with Robust Stability

Xiuzhen Xu, Xiujuan Zhang*, Wei Deng, Liming Huang, Wei Wang, Jiansheng Jie* and Xiaohong Zhang

*E-mail: jsjie@suda.edu.cn, xjzhang@suda.edu.cn

Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou Jiangsu 215123, P. R. China. **Table S1:** Comparison of the preparation methods, crystal qualities, growth atmospheres, and morphologies of the perovskite NWs in this work with these in literatures.

Materials	Methods	Growth atmospheres	Grain boundaries/ surface defects	Morphologies	Ref
CH3NH3PbI3 NW	One-step	Organic solvent vapor	Few	5 <u>00 nm</u>	Our work
CH3NH3PbI3 NW	Template-as sisted one-step method	Organic solvent vapor	Few	0.2 µm	1
CH3NH3PbI3 NW	Two-step	CH ₃ NH ₃ I vapor	Many	300 nm	2
CH3NH3PbI3 NW	One-step	Air	Many		3
CH3NH3PbI3 NW	One-step	Air	Many	b	4
CH3NH3PbI3 NW	Two-step	Solution	Few	500 nm	5
CH ₃ NH ₃ PbBr ₃ porous NW	Two-step	Organic solvent	Many	200 nm	6

Concentration (mol/L)	0.0025	0.005	0.0075	0.01
Average size (nm)	500	580	910	1100

Table S2. As-grown CH₃NH₃PbI₃ NWs with different concentrations.

Figure S1. In situ observation of the CH₃NH₃PbI₃ NWs growth process.

Figure S2. (a) Cross-polarized optical micrograph of the CH₃NH₃PbI₃ NWs grown in ambient air. (b) SEM image of the CH₃NH₃PbI₃ NWs grown in ambient air. (c) Magnified SEM image of the CH₃NH₃PbI₃ NW grown in ambient air. (d) AFM image of the CH₃NH₃PbI₃ NW grown in ambient air.

Figure S3. (a, b) SEM images of the $CH_3NH_3PbI_3$ NWs grown in dry box (humidity ~15%).

Figure S4. (a, b) SEM images of the $CH_3NH_3PbI_3$ NWs grown in N_2 glove box.

Figure S5. (a, b) SEM images of the CH₃NH₃PbI₃ NWs grown in ethanol vapor atmosphere.

Figure S6. Optical and SEM images of as-grown CH₃NH₃PbI₃ NWs with different concentrations: (a, b) 0.0025 mol/L, (c, d) 0.005 mol/L, (e, f) 0.0075 mol/L, and (g, h) 0.01 mol/L.

Figure S7. Dark/photo current of the photodetector based on $CH_3NH_3PbI_3$ NW synthesized under saturated vapor and in ambient air, respectively. The light intensity was fixed at 60 μ W/cm².

Figure S8. *I-V* curves of the photodetector measured in the dark and under illumination with a different wavelength. The light intensity was fixed at $60 \,\mu\text{W/cm}^2$.

Figure S9. Time-resolved photoresponse of the CH₃NH₃PbI₃ NW-based photodetector. The 600 nm-light source was turned on/off by a signal generator to generate pulsed light.

Figure S10. (a-d) Histograms of *R*, D^* , t_r and t_d measured from 50 devices under the same conditions (460 nm, 60 μ W/cm²).

Figure S11. Band alignment between grains and GB.

Photoresponsivity of the photodetector is calculated by the following equation:

$$R_{\lambda} = \frac{J_{ph} - J_d}{L_{light}} = \frac{I_{light} - I_{dark}}{A \times L_{light}}$$

where I_{light} is the photo-generated current under light illumination, I_{dark} is the current in dark, A is the active area ($A = W \times L$, where W is the width of the NW, L is the channel length of the device) of the photodetector, and L_{light} is the light intensity. In this case, I_{light} and I_{dark} for the single CH₃NH₃PbI₃ NW at light wavelength of 460 nm were measured to be 3.37×10^{-9} and 1.57×10^{-11} A, respectively. Active area for the CH₃NH₃PbI₃ NW-based device was $\sim 1.215 \times 10^{-7}$ cm² (W is 0.45 µm and L is 27 µm). The light intensity for the incident light was fixed at 60 µW/cm², which was calibrated with a silicon photodiode (Newport, 918D-UV-OD3R). Thus the highest Rvalue was estimated to be 460 A/W at an incident light wavelength of 460 nm.

REFERENCES

(1) Deng, W.; Huang, L. M.; Xu, X. Z.; Zhang, X. J; Jin, X. C.; Lee, S. T.; Jie, J. S., Nano Lett. 2017, 17, 2482-2489.

(2) Gu, L. L.; Tavakoli, M. M.; Zhang, D. Q.; Zhang, Q. P.; Waleed, A.; Xiao, Y. Q;
Tsui, K. H.; Lin, Y. J.; Liao, L.; Wang, J. N.; Fan, Z. Y., *Adv. Mater.* 2016, *28*, 9713-9721.

(3) Deng, H.; Dong, D. D.; Qiao, K. K.; Bu, L. L.; Li, B.; Yang, D.; Wang, H. E.;
Cheng, Y. B.; Zhao, Z. X.; Tang, J.; Song, H. S., *Nanoscale* 2015, *7*, 4163-4170.
(4) Horváth, E.; Spina, M.; Szekrényes, Z.; Kamarás, K.; Gaal, R.; Gachet, D.; Forró,
L., *Nano Lett.* 2014, *14*, 6761-6766.

(5) Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson,

- M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y., Nat. Mater. 2015, 14, 636-642.
- (6) Zhuo, S. F.; Zhang, J. F.; Shi, Y. M.; Huang, Y.; Zhang, B., Angew. Chem. Int.

Ed. 2015, 54, 5693-5696.