First Principle Molecular Dynamics Investigation of Waterborne As–V Species

Sangkha Borah and P. Padma Kumar*

Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, India-781039

E-mail: padmakumarp@iitg.ernet.in

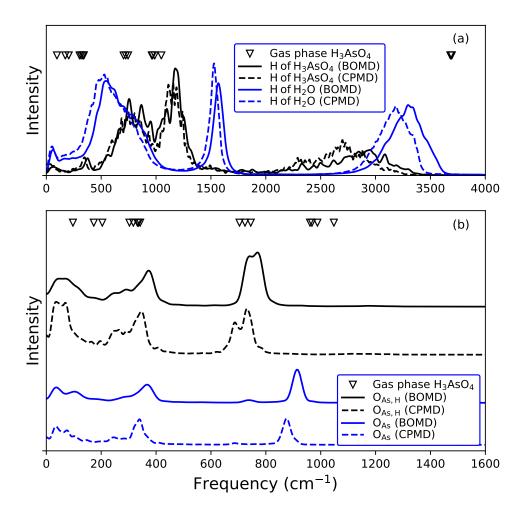


Figure S1: The vibrational density of states (VDOS) from CPMD (dotted lines) simulation is compared with Born-Oppenheimer (BO) MD (solid lines). Top panel (a): H of H_3AsO_4 (black) and H of H_2O (blue); Bottom panel (b): $O_{As,H}$ (black) and O_{As} (blue) atoms of H_3AsO_4 . The gas phase vibrational frequencies are shown in both panels as triangles pointed-down.

The shifts of CPMD spectra w.r.t. the BOMD ones are approx. 110 cm^{-1} for OH stretching modes of H₂O and approx. 240 cm^{-1} for those of H₃AsO₄ (intra-molecular), while for As–O_{As} and As–O_{As,H}, those are approx. 40 cm^{-1} . The BOMD simulations are carried out at 315 K starting from a well equilibrated structure of one H₃AsO₄ solvated by 60 H₂O molecules in box of size 12.42 Å. These calculations are performed at the same level of theory as the CPMD simulations, except that a larger time steps of 0.25 fs is used, and the total run is 6 ps long.