Process Integration Using Block Superstructure

Jianping Li, Salih Emre Demirel, and M. M. Faruque Hasan^{*}

Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station, TX 77843-3122, USA

Supporting Information Available

The supporting information provides the problem parameters for case study 3 on simultaneous water and heat integration, which is adapted from the work of Ahmetović and Kravanja.¹

Table S1:	Cost	and	operating	parameters	for	case	study	3:	simultaneous	water	and	heat
integration	ι.											

Parameter	Value
Feed cost CC_f	$0.375 \ \text{s/t}$
Cold utility cost CC^{CU}	$189 \ (KW yr)$
Heat utility cost CC^{HU}	377 \$/(KW yr)
Fixed charge of heat exchangers $CF_{x,xx}$, CF_x^{CU} , CF_x^{HU}	8000 \$
Unit capital cost of heat exchangers $CC_{x,xx}$, CC_x^{CU} , CC_x^{HU}	$1200 \ \$/m^2$
Cost exponent for heat exchangers $B_{x,xx}$, B_x^{CU} , B_x^{HU}	0.6
Water source temperature T^f	$20^{\circ}\mathrm{C}$
Waste stream temperature $T_s^{min} = T_s^{max}$	$30^{\circ}\mathrm{C}$
Operating hours within a full year OH	8000 hr
Overall heat transfer coefficient $U^{phex} = U^{HU} = U^{CU}$	$0.5 ({ m KW} / (m^2 \ { m ^cC})$
Heat capacity of water Cp_k	4.2 kJ/(kg °C)
Inlet and outlet temperature of cooling water	$10^{\circ}\mathrm{C}$ and $20^{\circ}\mathrm{C}$
Inlet and outlet temperature of steam	$120^{\circ}\mathrm{C}$

References

(1) Ahmetović, E.; Kravanja, Z. Simultaneous synthesis of process water and heat exchanger networks. *Energy* **2013**, *57*, 236–250.