Supporting information for: ## Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling Loredana Protesescu, †,‡ Sergii Yakunin, †,‡ Olga Nazarenko, †,‡ Dmitry N. Dirin, †,‡ and Maksym V. Kovalenko †,‡ * † Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland ‡ Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland *mvkovalenko@ethz.ch **Figure S1.** Experiments with balls-to-materials weight ratios (BMR) ranging from 21.7 to 167 in the synthesis of CsPbBr₃ NCs by wet ball milling. **Figure S2.** The effect of milling time for on the formation of (a) CsPbBr₃ NCs and (b) FAPbBr₃ NCs by wet ball milling using ball-to-material mass ratio of 80, mestylene as a solvent and oleylammonium bromide as a ligand. **Figure S3.** The effect of the used ligand systems on the outcome of the synthesis of (a) CsPbBr₃ NCs and (b) FAPbBr₃ NCs by wet ball milling. **Figure S4.** (a) Photograph of the product after 21 h of ball milling; under UV lamp. (b) the corresponding PL emission showing two peaks corresponding to CsPbBr₃ NPLs and (the most intense) to CsPbBr₃ NCs; (c) and (d) TEM images showing both CsPbBr₃ NCs and NPLs morphologies. Figure S5. $MAPbI_3$ NCs obtained with wet ball-milling method.