Determine the Ni–Ni Bonding Strength in Metal-String Complexes Using Head-to-Head Nanorods and Electrochemical Surface Enhanced Raman Spectroscopy

Bo-Han Wu,^a Li-Yen Hung,^a Jheng-Yang Chung,^a Shie-Ming Peng,^b I-Chia Chen^a*

^aDepartment of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China ^bDepartment of Chemistry, National Taiwan University, Taipei, 106, Taiwan, Republic of China

Table of Contents

2. Figure S2: Cyclic voltammogram of (a) $Ni_3(dpa)_4(NCS)_2$ and (b) $Ni_3(dpa)_4Cl_2$	S2
3. Figure S3: ECSERS spectra of Ni ₃ (dpa) ₄ (NCS) ₂	S3
4. Figure S4: (a) Solid-state Raman, (b) ECSERS at +1.3 V, and (c) AuNP SERS of $Ni_3(dpa)_4Cl_2$	S4
5. Figure S5: Absorption spectra of Ni ₃ (dpa) ₄ Cl ₂ with varied applied voltages	S5
6. Figure S6: SEM image of AuNR(CTAB) with Ni ₃ (dpa) ₄ (NCS) ₂	S5
7. Figure S7: SERS of Ni ₃ (dpa) ₄ (NCS) ₂ in (a) AuNR(CTAC) and (b) AuNR(CTAB)	S6
8. Figure S8. Full Raman spectra of (a) [Ni ₂ (TPG) ₄]BF ₄ , (b) Ni ₂ (TPG) ₄ , and (c) HTPG	S7

Figure S1. Full SERS Spectra of (a) AuNR(CTAC), (b) AuNR(CTAB), (c) AuNS(CTAB) and (d) AuNS(citrate) Ni₃(dpa)₄(NCS)₂ in solution and (e) full Raman spectrum of Ni₃(dpa)₄(NCS)₂ in solid crystals. Asterisk denotes band from acetonitrile.

Figure S2. Cyclic voltammogram of (a) $Ni_3(dpa)_4(NCS)_2$ and (b) $Ni_3(dpa)_4Cl_2$ adsorbed on AuNPs in 0.1 M TBAP/DCM.

Figure S3. Full ECSERS spectra of Ni₃(dpa)₄(NCS)₂ from 0.54 V-+1.69 V.

Figure S4. (a) Solid state Raman curve, (b) AuNP SERS, (c) ECSERS at +1.3 V, and (d) AuNP SERS with AgPF₆ added of Ni₃(dpa)₄Cl₂. Asterisk sign denotes bands from dichloromethane (DCM). The assigned [Ni₃] core is as indicated.

Figure S5. Absorption spectra of $Ni_3(dpa)_4Cl_2$ without and with applied voltage at +0.74, +1.14, +1.34, +1.39 V in 0.1 M TBAP/DCM.

Figure S6. SEM image of AuNR(CTAB) with $Ni_3(dpa)_4(NCS)_2$ as the bridging molecules. The scale bar is 100 nm.

Figure S7. SERS of $Ni_3(dpa)_4(NCS)_2$ in (a) AuNR(CTAC) and (b) AuNR(CTAB). Asterisk denotes band from acetonitrile.

Figure S8. Full Raman spectra of (a) $[Ni_2(TPG)_4]BF_4$, (b) $Ni_2(TPG)_4$, and (c) HTPG with 633 nm excitation.