Supporting Information ## Pd-catalyzed substitution of the OH group of nonderivatized allylic alcohols by phenols Thanya Rukkijakan, Sunisa Akkarasamiyo, Supaporn Sawadjoon, and Joseph S. M. Samec* Address: Department of Organic Chemistry, Stockholm University, 106 91, Stockholm, (Sweden) E-mail: joseph.samec@su.se ## Checklist of characterization data of all compounds | Compounds | Known/
New compound | ¹ H-NMR | ¹³ C-NMR | IR | HRMS | |-----------|------------------------|--------------------|---------------------|----|-----------| | Ph 3a | Known | \checkmark | V | V | V | | Ph O | Known | \checkmark | V | V | $\sqrt{}$ | | Ph 3c | Known | √ | √ | V | V | | Ph 3d | Known | V | V | V | V | | Ph 3e #Bu | Known | $\sqrt{}$ | $\sqrt{}$ | V | $\sqrt{}$ | | Ph OMe | Known | √ | V | V | V | | Ph 3g | Known | √ | √ | V | V | | Ph O F | Known | \checkmark | V | V | V | | 31 | Known | √ | √ | V | V | | Ph 3j | Known | V | V | V | V | | Ph OMe | Known | V | V | V | V | | Ph 3I | Known | V | V | V | V | | Ph 3m | New | \checkmark | $\sqrt{}$ | V | V | | 3n | Known | V | V | V | V | | 30 | Known | $\sqrt{}$ | V | V | V | ¹H NMR (400 MHz, CDCl₃) of compound **3a** ^{13}C NMR (100 MHz, CDCl $_{\!3})$ of compound $\boldsymbol{3a}$ Ph 3b ¹H NMR (400 MHz, CDCl₃) of compound **3b** ¹³C NMR (100 MHz, CDCl₃) of compound **3b** ¹H NMR (400 MHz, CDCl₃) of compound **3c** ^{13}C NMR (100 MHz, CDCl₃) of compound 3c ¹H NMR (400 MHz, CDCl₃) of compound **3d** 13 C NMR (100 MHz, CDCl₃) of compound **3d** ¹H NMR (400 MHz, CDCl₃) of compound **3e** 13 C NMR (100 MHz, CDCl₃) of compound 3e ¹H NMR (400 MHz, CDCl₃) of compound **3f** ¹³C NMR (100 MHz, CDCl₃) of compound **3f** $^{1}\text{H NMR}$ (400 MHz, CDCl₃) of compound 3g ¹³C NMR (100 MHz, CDCl₃) of compound **3g** ¹H NMR (400 MHz, CDCl₃) of compound **3h** ^{13}C NMR (100 MHz, CDCl $_{\!3})$ of compound $\boldsymbol{3h}$ ¹H NMR (400 MHz, CDCl₃) of compound **3i** ^{13}C NMR (100 MHz, CDCl3) of compound 3i ¹H NMR (400 MHz, CDCl₃) of compound **3j** ¹H NMR (400 MHz, CDCl₃) of compound **3k** $^{13} C$ NMR (100 MHz, CDCl $_{\! 3})$ of compound 3k ¹H NMR (400 MHz, CDCl₃) of compound **31** ¹³C NMR (100 MHz, CDCl₃) of compound **31** 1 H NMR (400 MHz, CDCl₃) of compound 3m S15 $^{1}\text{H NMR}$ (400 MHz, CDCl₃) of compound 3n $^{13} C$ NMR (100 MHz, CDCl $_{3})$ of compound $\boldsymbol{3n}$ SA-1034TR $^{1}\text{H NMR}$ (400 MHz, CDCl₃) of compound 30 SA-1034TR ^{13}C NMR (100 MHz, CDCl $_3$) of compound $\boldsymbol{3o}$