SUPPORTING INFORMATION

Redox Potentials and Electronic States of Iron Porphyrin IX Adsorbed on Single Crystal Gold Electrode Surfaces

Ling Zhang, Kasper P. Kepp, Jens Ulstrup, * Jingdong Zhang*

Table S1. The peak width of half height of anodic and cathodic peaks (V) and the peak separations (ΔE , V) of the high–potential (-0.20 V vs. NHE) and low–potential (-0.42 V) peaks in cyclic voltammograms (CVs) of FePPIX adsorbed on Au(111) single–crystal electrode at pH 11.7 at different scan rates (v, V/s).

17	High-pot	ential peaks (-0.20 V	V)	Low-potential peaks (-0.42 V)			
V s ⁻¹	Anodic peak–width	Cathodic peak–width	$\Delta E, \mathbf{V}$	Anodic peak width	Cathodic peak width	$\Delta E, V$	
0.2	0.101±0.006	0.098±0.003	0.022	0.091±0.009	0.085 ± 0.008	0.014	
0.3	0.101 ± 0.002	0.095 ± 0.002	0.022	0.090 ± 0.022	0.090±0.013	0.0	
0.4	0.111 ± 0.004	0.102 ± 0.004	0.014	0.099±0.014	0.092 ± 0.010	0.002	
0.5	0.108 ± 0.004	0.106 ± 0.006	0.022	0.099±0.015	0.095 ± 0.004	0.0	
0.7	0.114 ± 0.008	0.110±0.002	0.015	0.100 ± 0.007	0.089 ± 0.005	0.0	
1.0	0.121±0.015	0.113±0.003	0.017	0.100 ± 0.007	0.095 ± 0.005	0.015	

Table S2. The peak width of half heigh	t of anodic and cathodic peaks (V) a	nd the peak separations (ΔE , V)
of FePPIX adsorbed on basal plane gr	aphite (BPG), edge-plane graphite (EPG) and glassy carbon (GC)
electrodes with the midpoint potential o	of -0.39, -0.39, and -0.40 V at pH 11.	7 at different scan rates (v , V/s).
	BPG	
$v, V s^{-1}$ And	odic peak Cathodic peak	EV

<i>v</i> , V s ⁻¹	Anodic peak	Cathodic peak	Λ Ε V	
	width	width	$\Delta E, v$	
0.2	0.093±0.009	0.091±0.009	0.037	
0.3	0.094 ± 0.009	0.095 ± 0.010	0.024	
0.4	0.129±0.013	0.124 ± 0.012	0.0	
0.5	0.138 ± 0.014	0.134±0.013	0.025	
0.7	0.135±0.014	0.135 ± 0.014	0.026	
1.0	0.141±0.014	0.126±0.013	0.0	
		EPG		
v, V s ⁻¹	Anodic peak	Cathodic peak		
	width	width	$\Delta E, V$	
0.2	0.125±0.013	0.106±0.011	0.014	
0.3	0.138±0.014	0.123±0.012	0.032	
0.4	0.150±0.015	0.141 ± 0.014	0.032	
0.5	0.156±0.016	0.136 ± 0.014	0.024	
0.7	0.164±0.016	0.140 ± 0.014	0.034	
1.0	0.153±0.015	0.139±0.014	0.056	
		GCE		
v, V s ⁻¹	Anodic peak	Cathodic peak	AF V	
	width	width	$\Delta E, v$	
0.2	0.125±0.016	0.126±0.016	0.015	
0.3	0.128±0.011	0.128 ± 0.011	0.022	
0.4	0.129±0.010	0.129 ± 0.010	0.027	
0.5	0.130±0.012	0.130±0.012	0.039	
0.7	0.134±0.010	0.134±0.010	0.049	
1.0	0.136±0.011	0.136±0.011	0.068	

Table S3. Midpoint potentials ($E_{1/2}$, vs. NHE) of FePPIX reported in the literature at the different pH and the values calibrated to pH 11.7 according to the Nernst equation, ΔE (V) = -0.059 ΔpH .

pH ^[ref.]	$E_{1/2}, \mathbf{V}$	Functional materials	Supporting electrode	State of FePPIX	Ion strength	<i>E</i> _{1/2} at pH 11.7, V
7.0 ^[1]	-0.140	/	11-amino-1- undecanethiol modified gold electrode	Chemically bonded	0.01 M, phosphate buffer	-0.420
7.4 ^[2]	-0.152	Graphene oxide nanosheets	Glassy carbon electrode	Physically adsorbed	0.1 M, phosphate buffer	-0.406
9.5 ^[3]	-0.280	/	Highly oriented pyrolytic graphite electrode	Physically adsorbed	0.1 M, Na ₂ B ₄ O ₇ buffer	-0.410
12.0 ^[4]	-0.439				0.2 M, NaClO ₄ and NaOH buffer	-0.421
9.8 ^[4]	-0.299	/	Pyrolytic graphite electrode	Physically adsorbed	0.1 M NaClO ₄ , 0.1 M carbonate buffer	-0.411
7.0 ^[4]	-0.129				0.1 M NaClO ₄ , 0.1 M phosphate buffer	-0.406

Au(110)	High	–potential peaks		Low	–potential peaks		
v, V s ⁻¹	Anodic peak width	Cathodic peak width	$\Delta E, V$	Anodic peak width	Cathodic peak width	$\Delta E, \mathbf{V}$	
0.2	0.127±0.022	0.145±0.031	0.001	0.085±0.033	0.101±0.045	0.034	
0.4	0.187±0.031	0.183±0.005	0.002	0.010±0.023	0.105±0.013	0.010	
0.5	0.191±0.004	0.190±0.002	0.005	0.093±0.010	0.092±0.011	0.070	
0.7	0.185±0.013	0.184±0.002	0.012	0.099±0.015	0.101±0.020	0.040	
1.0	0.202±0.003	0.203 ± 0.003	0.015	0.107±0.018	0.105 ± 0.021	0.010	
Au(100)	High	–potential peaks		Low	–potential peaks		
	Anodic peak	Cathodic peak		Anodic peak	Cathodic peak		
<i>v</i> , v s	width	width	$\Delta E, V$	width	width	/) //, V	
0.2	0.102±0.003	0.089±0.011	0.020	_*	_*	_*	
0.4	0.110±0.006	0.094±0.008	0.020	0.093 ± 0.002	0.084 ± 0.006	0.030	
0.5	0.107±0.012	0.099 ± 0.004	0.024	0.106 ± 0.008	0.100 ± 0.005	0.013	
0.7	0.112±0.009	0.106 ± 0.001	0.022	0.103 ± 0.004	0.103 ± 0.004	0.042	
1.0	0.123±0.001	0.114±0.006	0.032	0.108±0.010	0.104 ± 0.005	0.0	
Au(poly)	High	-potential peaks		Low	–potential peaks		
ч. V s ⁻¹	Anodic peak	Cathodic peak	Λ Γ V	Anodic peak	Cathodic peak	ΛΕΛ	
<i>v</i> , v s	width	width	$\Delta L, \mathbf{v}$	width	width	Δ L , V	
0.2	0.163±0.016	0.142±0.014	0.032	0.120±0.012	0.105±0.011	0.037	
0.4	0.202 ± 0.010	0.184±0.010	0.034	0.162±0.016	0.109±0.009	0.022	
0.5	0.192±0.008	0.174 ± 0.008	0.039	0.141±0.012	0.106 ± 0.007	0.012	
0.7	0.193±0.010	0.178±0.009	0.044	0.138±0.010	0.108 ± 0.008	0.012	
1.0	0.194±0.010	0.194±0.010	0.022	0.138 ± 0.010	0.108 ± 0.009	0.019	

Table S4. The peak width of half height of anodic and cathodic peaks (V) and the peak separations (ΔE , V) of the high–potential and low–potential peaks in cyclic voltammograms (CVs) of FePPIX adsorbed on Au(110) and Au(100) single–crystal electrodes at pH 11.7 at different scan rates (v, V/s).

*Peaks are too small that values can be determined.

Figure S1. Anodic and cathodic peak current densities (j) versus scan rates (v) of FePPIX on Au(100) (A) , Au(110), and Au(poly) (D) electrodes. 10 μM FePPIX, 5 mM NaClO₄ pH 11.7.

Figure S2. (A – C) CVs of EPG (A) and GC (B) electrodes in 10 μ M hemin, 5 mM NaClO₄ pH 11.7 . Scan rates, 0.2, 0.3, 0.4, 0.5, 0.7, and 1.0 V s⁻¹. (C) Cathodic and anodic j–v plots for EPG and GC electrodes, respectively.

Table S5. Electroactive Coverages of FePPIX Adsorbed on the Different Electrodes. 5 mM NaClO₄, pH 11.7.

Electrodes	Γ , mol cm ⁻² , and Ratio to Full Monolayer*					
	High-potential	Low-potential				
Au(111)	$3.7(\pm 0.6) \times 10^{-11}, 20\%$	$5.1(\pm 1.5) \times 10^{-12}, 3.0\%$				
Au(100)	$4.0(\pm 0.6) \times 10^{-11}, 25\%$	$2.7(\pm 1.7) \times 10^{-12}, 1.5\%$				
Au(110)	$2.7(\pm 0.5) \times 10^{-11}, 15\%$	$5.5(\pm 1.5) \times 10^{-12}, 3.0\%$				
Au(poly)	$1.3(\pm 0.2) \times 10^{-11}, 7.6\%$	$8.7(\pm 0.2) \times 10^{-12}, 5.1\%$				
BPG	_	$1.8(\pm 0.8) \times 10^{-12}, 100\%$				
EPG	_	$2.0(\pm 0.5) \times 10^{-12}, 100\%$				
GC	_	$1.3(\pm 0.2) \times 10^{-10}, 80\%$				

*Theoretical full monolayer, 1.7×10^{-10} mol cm⁻² assuming closest packing of 1.0×1.0 nm² FePPIX molecules.

The Laviron equation³⁹, with a transfer coefficient $\alpha = 0.5$ and peak separation $\Delta E_p > 200$ mV was applied:

$$\Delta E_p = 4 \frac{RT}{nF} ln \frac{1/2}{m} \qquad (S1)$$

m is defined as $m = \frac{RTk_s}{Fnv}$, *F* is Faraday's constant, 96485 A s mol⁻¹. *R* the gas constant, 8.314 J K⁻¹ mol⁻¹, *n* the number of electrons transferred (unity for the Fe(III)/(II) couple), *v* the scan rate, V s⁻¹, and k_s the electron transfer rate constant (s⁻¹).

By plotting m^{-1} against v, k_s is determined by the slope.

Figure S3. Calculations of k_s (s⁻¹) for FePPIX adsorbed on Au(111) and BPG surfaces. Plots of m^{-1} versus v (V s⁻¹) for the high–potential peaks at -0.20 V (A) and low–potential peaks at -0.42 V (B) of FePPIX on Au(111), and -0.39 V on BPG (C).

Table S6. Computed DFT (TPSSh–D3/def2–TZVPP) energies of optimized penta–coordinated FePPIX models with distal OH⁻ axial ligand, –Fe(OH⁻). HS = high–spin, LS = low–spin. The formal electrostatic charge on the iron center (*Q*), the single-point electronic ground state energies in units of hartree (*E/def2–TZVPP*), dispersion corrections in units of hartree (*D3 correction*), the high–spin/low–spin energy gap in KJ/mol ($\Delta E_{(HS-LS)}$) where a positive number signifies that low–spin is favored, and the vertical ionization energies and electron affinities (λ , hartree) used for computing reorganization energies (λ , KJ/mol).

Models	Oxidation and Spin states	Q	<i>E/def2-</i> <i>TZVPP</i> , hartree	<i>D3</i> <i>correction</i> , hartree	$\Delta E_{(HS-LS)},$ kJ mol ⁻¹	λ, hartree	λ, kJ mol ⁻¹
	HS Fe(III)	-2	-3174.50629	-0.07967	3.0	-3174.62632	14.1
T.	HS Fe(II)	-3	-3174.62685	-0.07948	-30.3	-3174.50146	
Free	LS Fe(III)	-2	-3174.50745	-0.08105		-3174.61443	
	LS Fe(II)	-3	-3174.61533	-0.08091		-3174.50391	
	HS Fe(III)	-2	-4124.69279	-0.18670	70.9	-4124.82142	54.1
Au 7	HS Fe(II)	-3	-4124.83305	-0.18837	92.3	-4124.70748	
atoms	LS Fe(III)	-2	-4124.71980	-0.19444		-4124.84827	
	LS Fe(II)	-3	-4124.86821	-0.18455		-4124.71912	
	HS Fe(III)	-2	-4250.52507	-0.19260	37.0	-4250.63701	64.8
carbon	HS Fe(II)	-3	-4250.65351	-0.19575	-33.9	-4250.52060	
Carbon	LS Fe(III)	-2	-4250.53917	-0.19645		-4250.64742	
	LS Fe(II)	-3	-4250.64060	-0.19514		-4250.53282	
	HS Fe(III)	-2	-4939.29410	-0.25911	17.0	-4939.43864	123.5
Au 13	HS Fe(II)	-3	-4939.37872	-0.26183	129.7	-4939.19477	
atoms	LS Fe(III)	-2	-4939.30058	-0.25932		-4939.25293	
	LS Fe(II)	-3	-4939.42811	-0.26216		-4939.25286	

Models	Oxidation and Spin states	Q	<i>E/def2- TZVPP</i> , hartree	<i>D3</i> <i>correction</i> , hartree	$\Delta E_{(HS-LS)},$ kJ mol ⁻¹	λ, hartree	λ, kJ mol ⁻¹
	HS Fe(III)	-2	-3250.47675	-0.08594	82.4	-3250.56933	47.1
E.	HS Fe(II)	-3	-3250.56764	-0.08415	39.9	-3250.45710	
Free	LS Fe(III)	-2	-3250.50815	-0.08480		-3250.59463	
	LS Fe(II)	-3	-3250.58282	-0.08484		-3250.50274	
	HS Fe(III)	-2	-4200.68789	-0.17438	56.7	-4200.80778	56.3
Au 7	HS Fe(II)	-3	-4200.76700	-0.17204	193.8	-4200.61067	
atoms	LS Fe(III)	-2	-4200.70947	-0.17187		-4200.82775	
	LS Fe(II)	-3	-4200.84081	-0.17696		-4200.70109	
	HS Fe(III)	-2	-4326.46198	-0.18106	106.2	-4326.57874	60.1
carbon	HS Fe(II)	-3	-4326.57635	-0.18373	-4.2	-4326.45659	
Carbon	LS Fe(III)	-2	-4326.50242	-0.18181		-4326.59930	
	LS Fe(II)	-3	-4326.57475	-0.17932		-4326.49901	
	HS Fe(III)	-2	-5015.26621	-0.26217	53.5	-5015.38047	73.5
Au 13	HS Fe(II)	-3	-5015.38821	-0.25664	56.0	-5015.24905	
atoms	LS Fe(III)	-2	-5015.28659	-0.25606		-5015.40010	
	LS Fe(II)	-3	-5015.40954	-0.24950		-5015.26803	

 Table S7. Computed DFT (TPSSh-D3/def2-TZVPP) energies of optimized hexa-coordinated FePPIX modes of Fe(*OH⁻)(OH⁻). *Proximal axial ligand to the surface.

Models	Oxidation and Spin states	Q	<i>E/def2- TZVPP</i> , hartree	<i>D3</i> <i>correction</i> , hartree	$\Delta E_{(HS-LS)},$ kJ mol ⁻¹	λ, hartree	λ, kJ mol ⁻¹
Free	HS Fe(III) HS Fe(II) LS Fe(III) LS Fe(II)	-2 -3 -2 -3	-3250.97834 -3251.10544 -3250.99528 -3251.09840	-0.08862 -0.08805 -0.08690 -0.08674	44.5 -18.5	-3251.09392 -3250.97544 -3251.09743 -3250.98948	73.1
Au 7 atoms	HS Fe(III) HS Fe(II) LS Fe(III) LS Fe(II)	-2 -3 -2 -3	-4201.17730 -4201.29915 -4201.20396 -4201.31543	-0.17335 -0.17304 -0.16938 -0.18340	70.0 42.7	-4201.31097 -4201.12346 -4201.31637 -4201.17099	84.1
carbon	HS Fe(III) HS Fe(II) LS Fe(III) LS Fe(II)	-2 -3 -2 -3	-4326.98749 -4327.08811 -4326.99923 -4327.08706	-0.18104 -0.19034 -0.18194 -0.18027	30.8 -2.8	-4327.09814 -4326.95827 -4327.10113 -4326.99401	73.4
Au 13 atoms	HS Fe(III) HS Fe(II) LS Fe(III) LS Fe(II)	-2 -3 -2 -3	-5015.74239 -5015.87382 -5015.80454 -5015.89197	-0.26720 -0.26420 -0.26178 -0.25305	51.3 47.6	-5015.87784 -5015.72674 -5015.92453 -5015.73942	85.5

 Table S8. Computed DFT (TPSSh-D3/def2-TZVPP) energies of optimized hexa-coordinated FePPIX models with distal OH2 and proximal OH⁻, Fe(*OH⁻)(OH2).

Models	Oxidation and Spin states	Q	<i>E/def2- TZVPP</i> , hartree	<i>D3</i> <i>correction</i> , hartree	$\Delta E_{(HS-LS)},$ kJ mol ⁻¹	λ, hartree	λ, kJ mol ⁻¹
Au 7 atoms	HS Fe(III) HS Fe(II)	-2 -3	-4201.16202 -4201.29040	-0.17222 -0.17200	46.3 45.4	-4201.30081 -4201.11178	104.6
	LS Fe(III) LS Fe(II)	-2 -3	-4201.18091 -4201.30770	-0.16767 -0.17093		-4201.17409 -4201.17397	
carbon	HS Fe(III) HS Fe(II) LS Fe(III) LS Fe(II)	-2 -3 -2 -3	-4326.97861 -4327.09391 -4327.00684 -4327.10410	-0.17390 -0.17541 -0.17953 -0.17813	74.1 26.7	-4327.09277 -4326.97903 -4327.07516 -4327.00358	84.5
Au 13 atoms	HS Fe(III) HS Fe(II) LS Fe(III)	-2 -3 -2	-5015.75310 -5015.87382 -5015.76617	-0.27779 -0.26767 -0.27546	34.3 104.3	-5015.88302 -5015.71290 -5015.89407	80.4

 Table S9. Computed DFT (TPSSh-D3/def2-TZVPP) energies of optimized hexa-coordinated FePPIX models with distal OH⁻ and proximal OH₂, Fe(*OH₂)(OH⁻).

λ, kJ mol ⁻¹	Free	Carbon	Au 13-atom
-Fe (OH ⁻)	14	65	124
-Fe(*OH ⁻)(OH ⁻)	47	60	74
-Fe(*OH ₂)(OH ⁻)	73	73	85
-Fe(*OH ⁻)(OH ₂)	_	85	80

Table S10. Reorganization Free Energies (λ , KJ mol⁻¹) of the Fe(III/II)PPIX Half Reactions Computed by DFT.

*The axial ligand proximal to the surface.

The reorganization energies in Table S9 do not correlate straightforwardly with the experimentally determined rate constants, Table 2. A "generic" rate constant form is thus^{5, 6},

$$k_s = \kappa \frac{\omega_{eff}}{2\pi} \exp[-\frac{\lambda}{4k_BT}]$$

where ω_{eff} is the effective vibrational frequency of all the nuclear modes reorganized, κ the electronic transmission coefficient, k_B Boltzmann's constant, and *T* the temperature. $\kappa \ll 1$ in the diabatic limit of weak electronic coupling between FePPIX and the electrode, while $\kappa \rightarrow 1$ in the opposite, adiabatic limit of strong interaction.

Most of the experimental rate constants are in the range 100~300 s⁻¹, i.e. with only a three–fold variation. The activation energy difference, i.e. the difference between $\lambda/4$ of the low–potential processes differs by only 2-5 kJ or a 2-8 fold rate constant difference in favor of carbon. The observed difference is in fact the opposite with k_s of the low-potential process larger for gold than for carbon in spite of the larger computed value of λ . The observed differences are, however, too small that they can be estimated reliably by DFT.

The activation energy $\lambda/4$ for the same Fe(OH⁻) species on carbon (low-potential) and gold (high-potential) is 15 kJ higher for the latter than for the former. This larger difference could be caused by a stronger contribution from reorganization of the gold surface itself than of the carbon electrode. The difference would give a 500-fold higher rate constant for carbon than for gold, but the observed values are in fact almost the same.

The apparent discrepancies could still be caused by a more favorable electronic transmission coefficient, i.e. stronger electronic interaction of FePPIX on gold than on carbon, as suggested by the DFT calculations. The former could then belong to the adiabatic limit and the latter to the (weakly) diabatic limit.

Axial ligand	Oxidation and Spin state	Q	<i>ZPE</i> , hartree	<i>G</i> , kJ mol ⁻¹	<i>S</i> , kJ mol ⁻¹ K ⁻¹
-OH	HS Fe(III)	-2	0.564546	1274.2	1.0357
	HS Fe(II)	-3	0.562531	1263.1	1.0650
	LS Fe(III)	-2	0.567396	1286.3	1.0104
	LS Fe(II)	-3	0.564368	1270.4	1.0447
-(OH)(OH)	HS Fe(III)	-3	0.575946	1291.5	1.1051
	HS Fe(II)	-4	0.573497	1285.4	1.1011
	LS Fe(III)	-3	0.578839	1297.1	1.1024
	LS Fe(II)	-4	0.575491	1297.4	1.0693
-(OH)(OH ₂)	HS Fe(III)	-2	0.588716	1324.5	1.1115
	HS Fe(II)	-3	0.585914	1322.9	1.0805
	LS Fe(III)	-2	0.591846	1341.7	1.0630
	LS Fe(II)	-3	0.588057	1317.9	1.1263

Table S11. Computed zero point energy (ZPE) in units of hartree, Gibbs free energy (G), and entropy (S) corrections in KJ mol⁻¹ and KJ mol⁻¹ K⁻¹ to each electronic state of free FePPIX with different axial ligands.

References

- (1) Sosna, M.; Fapyane, D.; Ferapontova, E. E. J. Electroanal. Chem. 2014, 728, 18-25.
- (2) Guo, Y.; Deng, L.; Li, J.; Guo, S.; Wang, E.; Dong, S. ACS Nano 2011, 5, 1282-1290.
- (3) Snyder, S. R.; White, H. S. J. Phys. Chem. 1995, 99, 5626-5632.
- (4) Shigehara, K.; Anson, F. C. J. Phys. Chem. 1982, 86, 2776-2783.
- (5) Kuznetsov, A. M.; Ulstrup, J. Electrochim. Acta 2000, 45, 2339-2361.
- (6) Kuznetsov, A. M.; Ulstrup, J., Chapter 6 The Simplest Chemical Process: Electron Transfer, pp 92-113;
 Chapter 7 Some Selected Experimental Data for Simple Electron Transfer Reactions, pp 115-134. In: Electron Transfer in Chemistry and Biology. An Introduction to the Theory. *John Wiley & Sons, Chichester*, 1998.