Supplementary Information

A ratiometric fluorescent sensor array as a versatile tool for bacterial pathogen identification and analysis

Denis Svechkarev,¹ Marat R. Sadykov,² Kenneth W. Bayles,² Aaron M. Mohs^{1,3,4,*}

¹ Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States

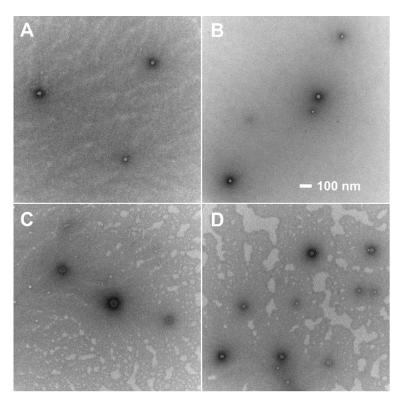
² Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, United States

³ Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States

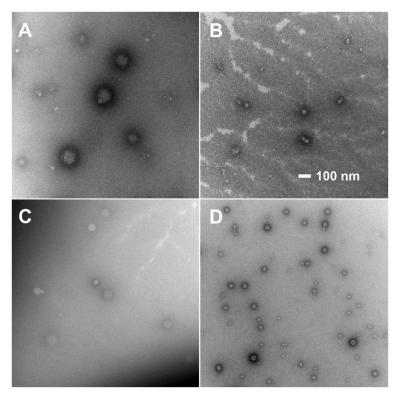
⁴ Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-6858, United States 1. Synthesis of the dyes

To 1 g of a N,N-disubstituted aminobenzaldehyde, 1 equiv. of 2-hydroxyacetophenone (or 2-hydroxynaphthophenone to obtain BfDMAF) was added in a 50 mL round-bottom flask, and the compounds were dissolved in 10 mL of DMF. Subsequently, 3 equiv. of sodium methylate were added, and the mixture was stirred at room temperature for 3 hours. After that, the mixture was transferred into a bigger flask and diluted with 50 mL of ethanol. An excess of 30 equiv. of sodium methoxide was then added, followed by an excess of 20 excess of 20 equiv. of hydrogen peroxide (30% v/v), that was added dropwise while stirring. Formation of the gel of the intermediate epoxide product was observed, which then dissolved upon further addition of H₂O₂. The mixture was subsequently refluxed for 2-3 minutes and left to cool down. After that, the reaction mixture was diluted with 50 mL of ultrapure water, and neutralized to pH 6-7. The product was filtered (extracted with ... in case of DOAF) and purified as indicated below.

<u>DMAF:</u> the crude product was recrystallized from methanol. Yield 0.71 g (35.5 %). ¹H NMR (500 MHz, DMSO-d₆): 3.01 (s, 6H), 6.84 (d, 2H), 7.42 (t, 1H), 7.73 (m, 2H), 8.07 (d, 1H), 8.12 (d, 2H), 9.16 (s, 1H).


<u>BfDMAF:</u> the crude product was recrystallized from methanol. Yield 0.92 g (41.5 %). ¹H NMR (500 MHz, DMSO-d₆): 3.02 (s, 6H), 6.87 (d, 2H), 7.66 (t, 1H), 7.77-7.85 (m, 2H), 8.08 (d, 1H), 8.16 (d, 2H), 8.27 (d, 1H), 9.23 (s, 1H), 10.01 (d, 1H).

<u>DOAF:</u> the crude product was purified by column chromatography (silica gel, chloroform). Yield 0.31 g (22.2 %). ¹H NMR (500 MHz, DMSO-d₆): 0.84 (t, 6H), 1.24-1.27 (m, 20H), 1.47 (m, 4H), 3.20 (t, 4H), 6.50 (t, 1H), 6.59 (d, 2H), 6.71 (d, 1H), 7.07 (t, 2H), 7.69 (d, 1H), 8.07 (d, 1H), 9.60 (s, 1H).


<u>DPAF:</u> the crude product was recrystallized from methanol. Yield 0.51 g (34.7 %). ¹H NMR (500 MHz, DMSO-d₆): 7.04 (d, 2H), 7.14 (m, 6H), 7.37 (m, 4H), 7.45 (t, 1H), 7.70 (d, 1H), 7.78 (t, 1H), 8.09 (t, 3H), 9.31 (s, broad, 1H).

Dye	Radius, nm	PDI		
DMAF	440 ± 160	0.670 ± 0.120		
BfDMAF	855 ± 50	0.465 ± 0.030		
DOAF	292 ± 7	0.065 ± 0.050		
DPAF	290 ± 16	0.385 ± 0.040		

Table S1. Hydrodynamic radii and polydispersity indices of the dye-lodaded nanoparticles
based on data from the dynamic light scattering measurements

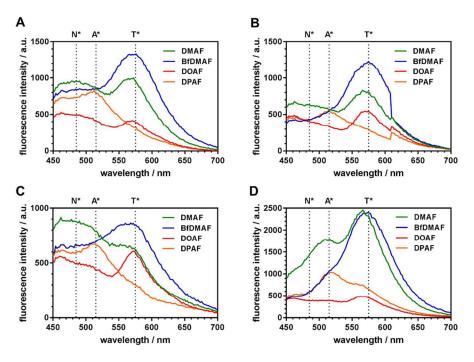


Figure S1. TEM micrographs of 0.5 mg/mL solutions of freshly prepared HA nanoparticles loaded with DMAF (**A**), BfDMAF (**B**), DOAF (**C**), and DPAF (**D**).

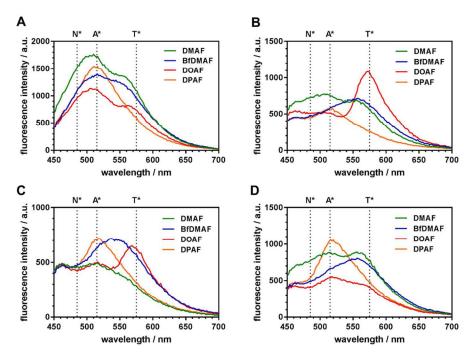


Figure S2. TEM micrographs of 0.5 mg/mL solutions of HA nanoparticles loaded with DMAF **(A)**, BfDMAF **(B)**, DOAF **(C)**, and DPAF **(D)**. Solutions were prepared 8 months prior to imaging.

2. Fluorescent response upon interaction with bacteria

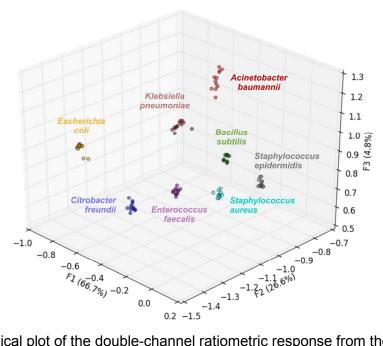


Figure S3. Fluorescence spectra of the ratiometric dyes upon interaction with Gram-positive bacteria: *Staphylococcus aureus* (A), *Staphylococcus epidermidis* (B), *Bacillus subtilis* (C), and *Enterococcus faecalis* (D).

Figure S4. Fluorescence spectra of the ratiometric dyes upon interaction with Gram-negative bacteria: *Escherichia coli* (A), *Acinetobacter baumannii* (B), *Klebsiella pneumoniae* (C), and *Citrobacter freundii* (D).

3. Multichannel sensing

Figure S5. Canonical plot of the double-channel ratiometric response from the four sensor components in the subspace of the first three discriminants.

4. Analysis of unknown samples

Table S2. Results of validation of the sensor array using randomized strain-proportional
training (75%) and test (25%) subsets of data

Unknown	Correct attribution to the corresponding class								
species	1	2	3	4	5	6	7	8	Total
Staphylococcus aureus	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%
Escherichia coli	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%
Staphylococcus epidermidis	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%
Acinetobacter baumannii	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%
Klebsiella pneumoniae	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%
Bacillus subtilis	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%

(continued on the next page)

faecalis TOTAL	24/24	24/24	24/24	24/24	24/24	24/24	24/24	24/24	100% 192/192 100%
Enterococcus	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24
Citrobacter freundii	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	24/24 100%

5. Predictive potential of the sensor array

Table S3. Determination of the Gram status for the unknown samples. Data for pairs of bacterial strains, one Gram(+) and one Gram(-) in each pair (shaded), were excluded from the main dataset and used as the test subset; data for the remaining 6 bacterial species were used as the training subset

Unknown species	Correct determination of the Gram status			
	samples	%		
Staphylococcus aureus	12/12	100		
Escherichia coli	12/12	100		
Staphylococcus epidermidis	12/12	100		
Acinetobacter baumannii	12/12	100		
Klebsiella pneumoniae	12/12	100		
Bacillus subtilis	12/12	100		
Citrobacter freundii	12/12	100		
Enterococcus faecalis	12/12	100		
TOTAL	96/96	100		

Table S4. Classification of the unknown samples outside of the training dataset in the"one against the rest" discrimination analysis. Data for the "test species" were excluded from themain dataset and used as a test subset; data for the remaining 7 bacterial species were used asa training subset – the target species against the other 6 species

Target species	Test species	Correct attribution to the "Other bacteria" class		
		samples	%	
Staphylococcus aureus	Escherichia coli	7/12	58	
	Staphylococcus epidermidis	10/12	83	
	Acinetobacter baumannii	12/12	100	
	Klebsiella pneumoniae	12/12	100	
	Bacillus subtilis	4/12	33	
	Citrobacter freundii	11/12	92	
	Enterococcus faecalis	12/12	100	

(continued on the next page)

Escherichia coli	Staphylococcus aureus	12/12	100
	Staphylococcus epidermidis	12/12	100
	Acinetobacter baumannii	12/12	100
	Klebsiella pneumoniae	12/12	100
	Bacillus subtilis	12/12	100
	Citrobacter freundii	12/12	100
	Enterococcus faecalis	2/12	16
Staphylococcus	Staphylococcus aureus	12/12	100
epidermidis	Escherichia coli	12/12	100
	Acinetobacter baumannii	7/12	58
	Klebsiella pneumoniae	12/12	100
	Bacillus subtilis	12/12	100
	Citrobacter freundii	12/12	100
	Enterococcus faecalis	12/12	100
Acinetobacter baumannii	Staphylococcus aureus	12/12	100
	Escherichia coli	11/12	92
	Staphylococcus epidermidis	3/12	25
	Klebsiella pneumoniae	10/12	83
	Bacillus subtilis	12/12	100
	Citrobacter freundii	12/12	100
	Enterococcus faecalis	12/12	100
Klebsiella pneumoniae	Staphylococcus aureus	12/12	100
···· · · · · · · · · · · · · · · · · ·	Escherichia coli	11/12	92
	Staphylococcus epidermidis	12/12	100
	Acinetobacter baumannii	12/12	100
	Bacillus subtilis	3/12	25
	Citrobacter freundii	10/12	83
	Enterococcus faecalis	12/12	100
Bacillus subtilis	Staphylococcus aureus	2/12	16
	Escherichia coli	12/12	100
	Staphylococcus epidermidis	12/12	100
	Acinetobacter baumannii	12/12	100
	Klebsiella pneumoniae	12/12	100
	Citrobacter freundii	12/12	100
	Enterococcus faecalis	5/12	42
Citrobacter freundii	Staphylococcus aureus	12/12	100
	Escherichia coli	11/12	92
	Staphylococcus epidermidis	12/12	100
	Acinetobacter baumannii	12/12	100
	Klebsiella pneumoniae	12/12	100
	Bacillus subtilis	12/12	100
	Enterococcus faecalis	9/12	75
Enterococcus faecalis	Staphylococcus aureus	12/12	100
	Escherichia coli	11/12	92
	Staphylococcus epidermidis	12/12	100
	Acinetobacter baumannii	12/12	100
	Klebsiella pneumoniae	12/12	100
	Bacillus subtilis	12/12	100
	Citrobacter freundii	12/12	100
	TOTAL	595/672	89