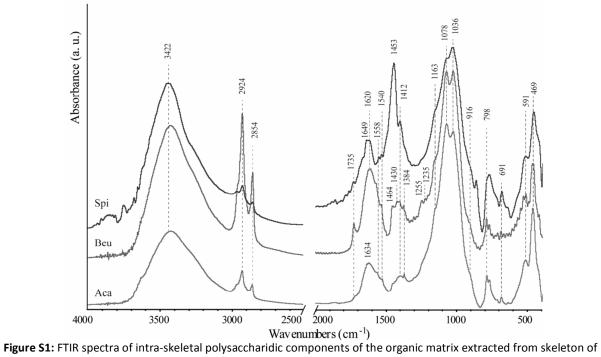
Supplementary Information

Structure and Function of Stony Coral Intra-Skeletal Polysaccharides

Annamaria Naggi, Giangiacomo Torri, Marcello Iacomini, Gabriele Colombo, Michela Reggi, Simona Fermani, Zvy Dubinsky, Stefano Goffredo and Giuseppe Falini*

Table S1	pag. S2
Table S2	pag. S3
Figure S1	pag. S4
Figure S2	pag. S4
Figure S3	pag. S5
Figure S4	pag. S5
Figure S4	pag. S6
References	pag. S6

Table S1: Assignment of organic compounds to bands on the FTIR spectra of *psc*OM; v-stretching vibration, δ -bending vibrations, s-symmetric and as-asymmetric.


Wave number	Assignment				
(cm ⁻¹)					
3422	v(O–H): water molecules				
2924	$v_{as}(CH_2)$:				
2854	v _s (CH ₂):				
1735	ν (C=O):				
1649-1634	Amide I: GAGs				
1620	: uronic acid				
1558	58 v _{as} (C=O): COO ⁻				
1540	v _s (C=O): COO				
1470-1400	$\delta(CH_2)$: sugars				
1384	$\delta(CH_3)$: O-acetyls				
1255-1235	v(S=O): esterified sulphate				
1163	v(C-O-C): glycosidic linkage				
1078	v(C-O-C): ether bonds				
1036	v(C-C): sugars				

The broad band detected around 3422 cm^{-1} was assigned to v(O–H) of water molecules. The bands assigned to asymmetric and symmetric stretching vibrations of the methyl and methylene groups were observed from 3050 to 2750 cm⁻¹. At 1735 cm⁻¹ is located the band associated with stretching vibrations of the carbonyl group v(C=O) that could be associated to the presence of acidic polysaccharides. Subsequent bands 1649-1634 cm⁻¹ were associated to amide vibration modes of glycosaminoglycans.¹ The band at 1620 cm⁻¹ indicated the presence of uronic acid. The doublet at 1558 cm⁻¹ and 1540 cm⁻¹ corresponds to the asymmetric stretching vibration of carboxyl functional group. The bands between 1470 and 1384 cm⁻¹ could be attributable to scissoring vibration of CH₂ (galactose, mannose) and asymmetric bending vibration of CH₃ (fucose, O-acetyls).^{2,3} The bands assigned to stretching vibrations of sulphate groups were observed from 1255 to 1225 cm⁻¹ and indicate the presence of esterifies sulphate. The bands from 1120 to 1030 cm⁻¹ can be assigned to a stretching vibration of the C–O group and are dominated by glycosidic linkage and at lower frequencies (around 1036 cm⁻¹) were polysaccharides with mannose, arabinose and rhamnose constituents.⁴

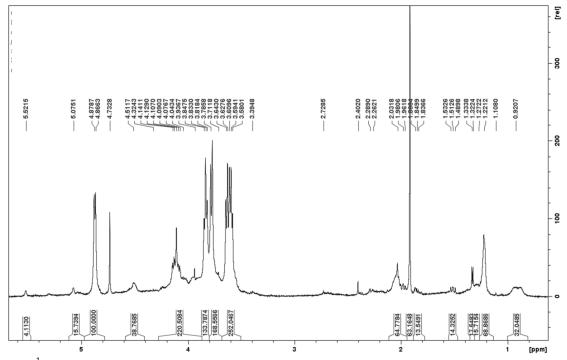
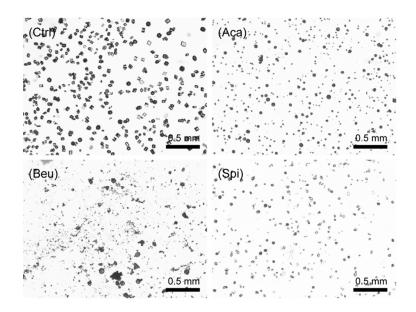
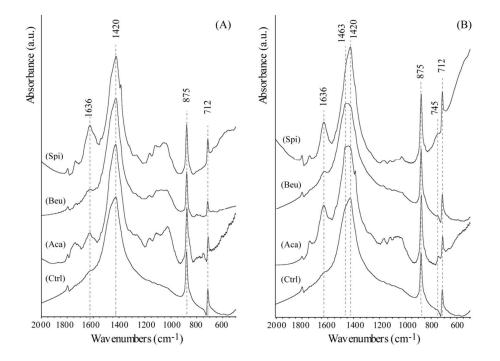

atom H	Principal component		Minor components		Polyglucuronic acid ⁵	
	H (C)	۶J		H (C)		
	chem shifts	coupling	g chem shift			
	(ppm)	(Hz)		(ppm)		
1	4.86 (104.8)	7.9	5.02 (104.2)	5.06 (103.9)	5.51 (101.8)	101.87
2	3.59 (76.3)	8.7	4.12 (72.1*)	4.09 (nd*)	4.10 (78-80*)	73.27
3	3.82 (85.7)	9.1	n.d.	3.59* (nd)		82.80
4	3.62 (73.2)	9.1		3.56 (88)		70.05
5	3.77 (78.7)	9.5		3.82 (72.2)	n.d.	75.63
6	- (178.5)			1.21*		175.47

Table S2: Proton and carbon NMR chemical shifts values of principal and minor components of *psc*OM from *S. pistillata*. Reference carbon chemical shifts data of oxidized curdlan are also reported.


* Indicative assignment


A. calycularis (Aca), B. europaea (Beu), and S. pistillata (Spi).

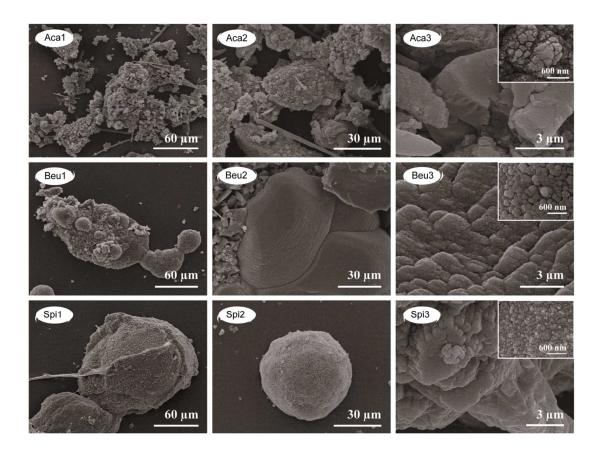

Figure S2. ¹H NMR spectrum of the *psc*OM of *S. pistillata*.

Figure S3. Optical microscope images of calcium carbonate particles precipitated in the absence of additives (Ctrl), in the presence of the *psc*OM extracted from *A. calycularis* (Aca), *B. europaea* (Beu) or *S. pistillata* (Spi).

Figure S4. FTIR spectra of calcium carbonate precipitated from 10 mM CaCl₂ solutions in the presence of wOMs (A) and *psc*OM (B) which were extracted from the skeletons of *A. calycularis* (Aca), *B. europaea* (Beu), *S. pistillata* (Spi). FTIR spectrum of calcium carbonate precipitated from 10 mM CaCl₂ solution without additives is also reported (Ctrl). The wavenumbers of the main absorption bands are indicated. The bands at 1420 cm⁻¹, 875 cm⁻¹ and 712 cm⁻¹ are from calcite, the one at 745 cm⁻¹ is from vaterite and that at 1636 cm⁻¹ could be assigned to polysaccharide and water.

Figure S5. Scanning electron microscopy pictures at increasing magnification (1-3) of particles obtained from *in vitro* CaCO₃ crystallization experiments from 10 mM CaCl₂ solution in presence of wOM extracted from *A. calycularis* (Aca), *B. europaea* (Beu) and *S. pistillata* (Spi). In the column 3 particles that covered wOMs surface are showed. In the insets high magnification images are reported with the granular submicrometer particles from crystals surface. These pictures show most representative particles of each population.

References

1. Arias, J.L.; Fernandez, M.S. Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization. *Chem. Rev.* **2008**, *108*, 4475.

2. Marxen, J.C.; Hammer, M.; Gehrke, T.; Becker, W. Carbohydrates of the Organic Shell Matrix and the Shell-Forming Tissue of the Snail Biomphalaria glabrata (Say). *Biol. Bull.* **1998**, *194*, 231.

3. Synytsya, A.; Kim, W.-J.; Kim, S.-M.; Pohl, R.; Synytsya, A.; Kvasnička, F.; Čopíková, J.; Park, Y. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. *Carb. Polym.* **2010**, *81*, 41.

4. Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR Study of Plant Cell Wall Model Compounds Pectic Polysaccharides and Hemicelluloses. *Carb. Polym.* **2000**, *43*, 195.