Supporting information for

Vacuum Ultraviolet Ionization-Induced Reaction of Neutral Au₂Al₂O₃ Clusters with Methane

Jiao-Jiao Chen^{†,‡,§}, Yuan Yang^{†,‡,§}, Yan-Xia Zhao^{*,†,‡}, Sheng-Gui He^{*,†,‡,§}

[†]State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

[‡]Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China

[§]University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding author. E-mail address: chemzyx@iccas.ac.cn; shengguihe@iccas.ac.cn.

Table of Contents

Figure S1. DFT-calculated structural isomers of the neutral Au₂Al₂O₃ cluster (Page S3)

Figure S2. Additional time-of-flight (TOF) mass spectra for reactions of neutral $Au_xAl_yO_z$ clusters with CH₄ and CD₄ (Page S4)

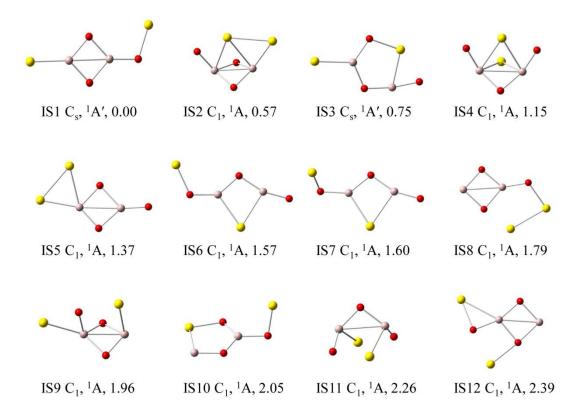

Figure S3. Complete DFT results for VUV ionization induced reaction of neutral Au₂Al₂O₃ cluster with CH₄ (Page S5)

Figure S4. DFT-calculated potential-energy profile for VUV ionization of I5 to generate CH₃[•] (Page S6)

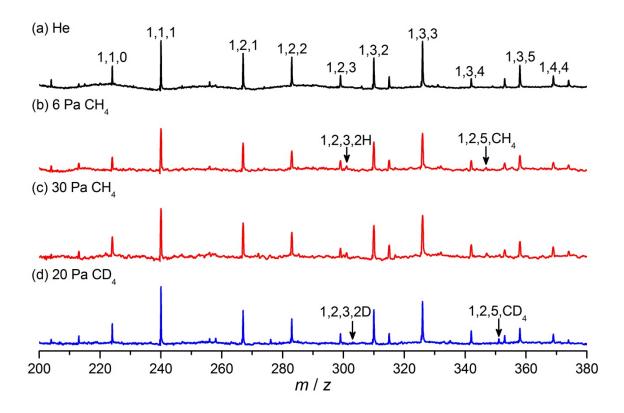
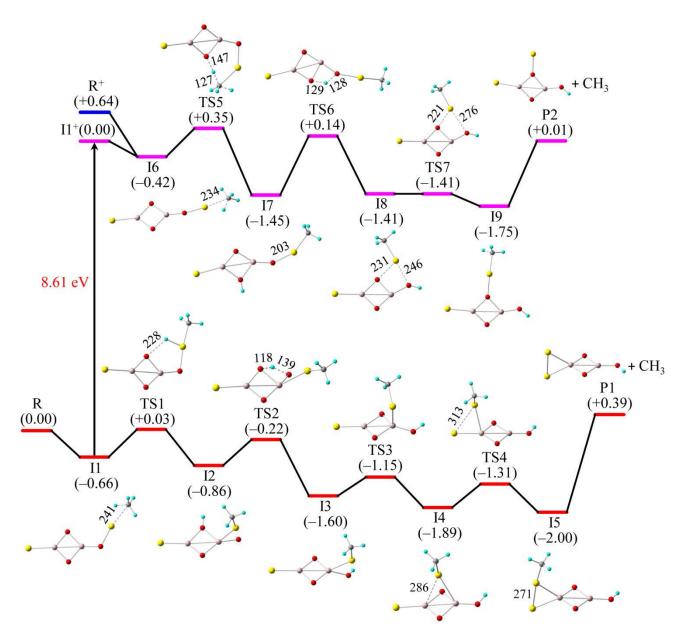
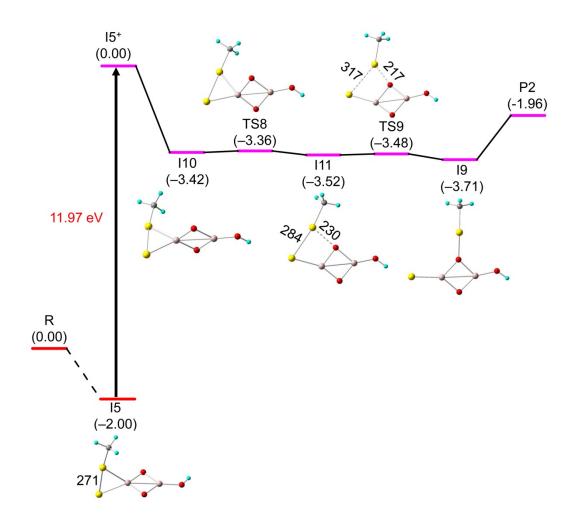
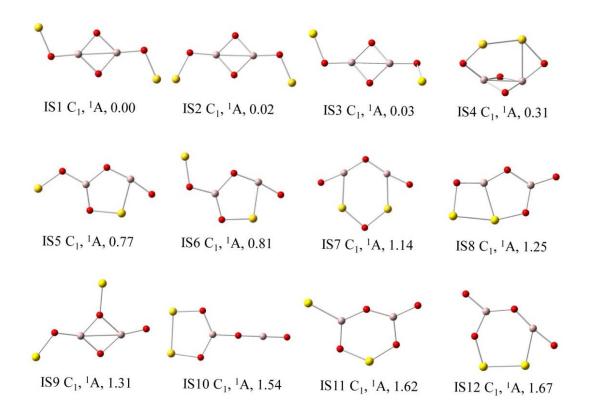
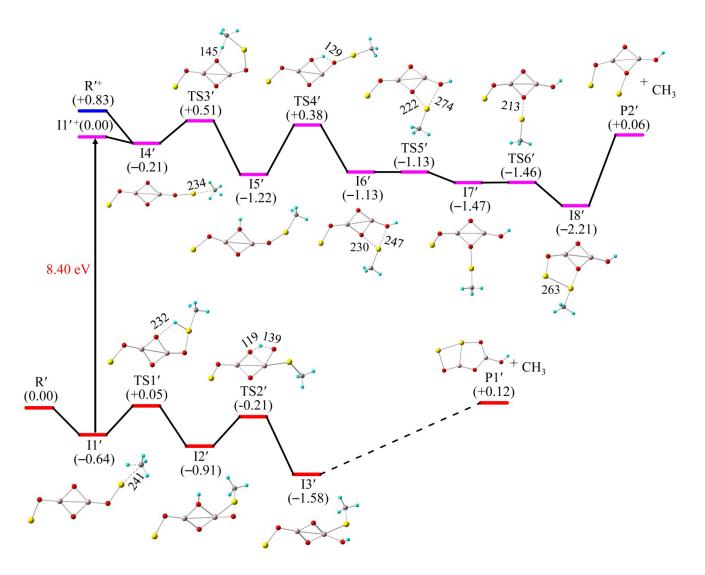

Figure S5. DFT-calculated structural isomers of neutral Au₂Al₂O₄ cluster (Page S7)

Figure S6. DFT-calculated potential-energy profile for VUV ionization induced reaction of neutral Au₂Al₂O₄ cluster with CH₄ (Page S8)


Figure S7. A comparison of the time-of-flight mass spectra for reactions of methane with $Au_2Al_2O_3^+$ and $Au_2Al_2O_4^+$ clusters (Pages S9-S10)


Figure S1. The DFT optimized structural isomers of neutral $Au_2Al_2O_3$ cluster. The symmetry, electronic state, and relative energies (in eV, with zero-point vibrational energy correction) are listed below each structure.


Figure S2. TOF mass spectra for the reactions of neutral $Au_xAl_yO_z$ clusters (a) with CH₄ (b, c), and CD₄ (d). The reactant gas pressures are shown. $Au_xAl_yO_z$ is denoted as *x*, *y*, *z* and $Au_xAl_yO_zX$ is denoted as *x*, *y*, *z*, X (X = H, D, CH₄, CD₄).


Figure S3. DFT-calculated potential-energy profile for VUV ionization induced reaction of neutral $Au_2Al_2O_3$ cluster with CH₄ (R). The structures of the intermediates (11–19), transition states (TS1–TS7), and products (P1 and P2) are shown. The relative energies (eV) of the reaction intermediates (I1–I5), transition states (TS1–TS4), and products (P1) are with respect to the separated reactants (R). The relative energies (eV) of the separated reactants (R⁺: $Au_2Al_2O_3^+$ and CH₄), reaction intermediates (I6–I9), transition states (TS5–TS7), and products (P2) are with respect to I1⁺. The vertical ionization energy of I1 and the bond lengths (in pm) are also shown.

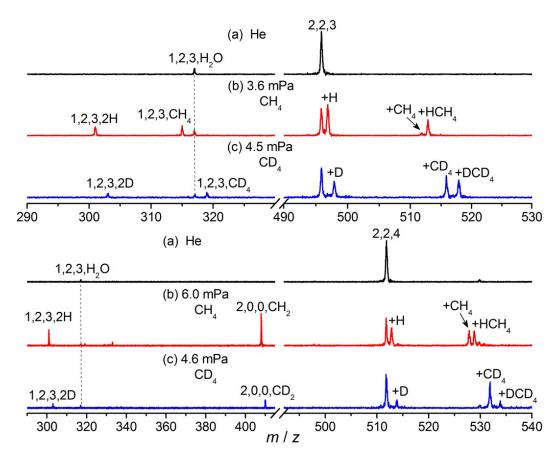

Figure S4. DFT-calculated potential-energy profile for VUV ionization of I5 to generate CH_3^{\bullet} . The relative energies (eV) of reaction intermediates (I9–I11), transition states (TS8 and TS9), and products (P2) are with respect to I5⁺. The vertical ionization energy of I5 and the bond lengths (in pm) are also shown.

Figure S5. The DFT optimized structural isomers of neutral $Au_2Al_2O_4$ cluster. The symmetry, electronic state, and relative energies (in eV, with zero-point vibrational energy correction) are listed below each structure.

Figure S6. DFT-calculated potential-energy profile for VUV ionization induced reaction of neutral $Au_2Al_2O_4$ cluster with CH₄ (R'). The structures of the intermediates (I1'–I8'), transition states (TS1'–TS6'), and products (P1' and P2') are shown. The relative energies (eV) of the reaction intermediates (I1'–I3'), transition states (TS1'–TS2'), and products (P1') are with respect to the separated reactants (R'). The relative energies (eV) of the separated reactants (R'+: $Au_2Al_2O_4^+$ and CH₄), reaction intermediates (I4'–I8'), transition states (TS3'–TS6'), and products (P2') are with respect to I1'⁺. The vertical ionization energy of I1 and the bond lengths (in pm) are also shown.

Figure S7. The TOF mass spectra for the reactions of mass-selected $Au_2Al_2O_3^+$ and $Au_2Al_2O_4^+$ clusters (a) with CH₄ (b) and CD₄ (c) in an ion trap reactor for about 1.9 ms. The reactant gas pressures are shown. $Au_xAl_yO_z^+$ is denoted as *x*, *y*, *z* and $Au_xAl_yO_zX^+$ is denoted as *x*, *y*, *z*, X (X = H, D, CH₄, CD₄, etc.). The label + X denotes $Au_2Al_2O_{3,4}X^+$ (X = H, D, CH₄, CD₄, etc.).

Figure S7 shows the time-of-flight mass spectra for the interactions of mass-selected Au₂Al₂O₃⁺ (m/z = 496) and Au₂Al₂O₄⁺ (m/z = 512) clusters with CH₄ and CD₄. The experimental details of Au₂Al₂O₄⁺ cluster reaction system are similar to that of Au₂Al₂O₃⁺.¹ It is noticeable that the both of the two clusters can react with a trace amount of H₂O impurity in the gas-handling system to generate AuAl₂O₃H₂O⁺ (Au₂Al₂O₃⁺ + H₂O \rightarrow AuAl₂O₃H₂O⁺ + Au and Au₂Al₂O₄⁺ + H₂O \rightarrow AuAl₂O₃H₂O⁺ + AuO). The product peaks assigned as Au₂Al₂O₃H⁺, Au₂Al₂O₃CH₄⁺, AuAl₂O₃H₂⁺, and AuAl₂O₃CH₄⁺ were observed for the reaction of Au₂Al₂O₃⁺ cluster with CH₄,¹ suggesting the following reaction channels [Eq.(S1)-(S4)]:

$$Au_2Al_2O_3^+ + CH_4 \rightarrow Au_2Al_2O_3H^+ + CH_3$$
 57% (S1)

$$Au_2Al_2O_3^+ + CH_4 \rightarrow Au_2Al_2O_3CH_4^+ \qquad 2\% (S2)$$

$$Au_2Al_2O_3^+ + CH_4 \rightarrow AuAl_2O_3H_2^+ + AuCH_2 \qquad 27\% (S3)$$

$$Au_2Al_2O_3^+ + CH_4 \rightarrow AuAl_2O_3CH_4^+ + Au \qquad 14\%$$
(S4)

Similarly, the product peaks assigned as $Au_2Al_2O_4H^+$, $Au_2Al_2O_4CH_4^+$, $AuAl_2O_3H_2^+$, and $AuCH_2^+$ were observed for the reaction of $Au_2Al_2O_4^+$ cluster with CH₄, as shown below [Eq.(S5)-(S8)]:

$$\begin{array}{ll} Au_{2}Al_{2}O_{4}^{+} + CH_{4} \rightarrow Au_{2}Al_{2}O_{4}H^{+} + CH_{3} & 39\% \ (\text{S5}) \\ \\ Au_{2}Al_{2}O_{4}^{+} + CH_{4} \rightarrow Au_{2}Al_{2}O_{4}CH_{4}^{+} & 16\% \ (\text{S6}) \\ \\ Au_{2}Al_{2}O_{4}^{+} + CH_{4} \rightarrow AuAl_{2}O_{3}H_{2}^{+} + AuOCH_{2} & 14\% \ (\text{S7}) \\ \\ \\ Au_{2}Al_{2}O_{4}^{+} + CH_{4} \rightarrow Au_{2}CH_{2}^{+} + Al_{2}O_{4}H_{2} & 31\% \ (\text{S8}) \end{array}$$

It is clear that the branching ratio of association channel (16%) for generation of $Au_2Al_2O_4CH_4^+$ is larger than that (2%) of $Au_2Al_2O_3CH_4^+$.

References

(1) Zhou, X.-H.; Li, Z.-Y.; Jiang, L.-X.; He, S.-G.; Ma, T.-M. Methane Activation Mediated by Dual Gold Atoms Doped in Aluminium Oxide Cluster Cations Au₂Al₂O₃⁺. *Chemistryselect* **2017**, *2*, 991-996.