Isochromophilones A–F, Cytotoxic Chloroazaphilones from the Marine Mangrove Endophytic Fungus *Diaporthe* sp. SCSIO 41011

Xiaowei Luo,^{†,‡} Xiuping Lin,[†] Huaming Tao,[§] Junfeng Wang,[†] Jiayi Li,^{†,§} Bin Yang,[†] Xuefeng Zhou,^{*,†} and Yonghong Liu^{*,†,‡}

[†]CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
[‡]University of Chinese Academy of Sciences, Beijing 100049, China
[§]School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China

Contents of Supporting Information

No.	Contents	Page		
1	Scheme S1. Proposed chemical formations of 3–5.			
2	Table S1. ¹ H (700 MHz) and ¹³ C NMR (175 MHz) Data for Compounds 1–2, 5–6			
3	Figure S1. ¹ H NMR spectrum of isochromophilone A (1) (CD ₃ OD, 700 MHz)			
4	Figure S2. ¹³ C NMR and DEPT spectra of isochromophilone A (1) (CD ₃ OD, 175			
	MHz)			
5	Figure S3. HSQC spectrum of isochromophilone A (1) (CD ₃ OD)	8		
6	Figure S4. HMBC spectrum of isochromophilone A (1) (CD ₃ OD)	9		
7	Figure S5. ¹ H- ¹ H COSY spectrum of isochromophilone A (1) (CD ₃ OD)	9		
8	Figure S6. NOESY spectrum of isochromophilone A (1) (CD ₃ OD)			
9	Figure S7. Positive and negative LR-ESI-MS spectra of isochromophilone A (1)			
10	Figure S8. Negative HR-ESI-MS spectrum of isochromophilone A (1)			
11	Figure S9. UV spectrum of isochromophilone A (1)			
12	Figure S10. IR spectrum of isochromophilone A (1)			
13	Figure S11 . ¹ H NMR spectrum of isochromophilone A (1) (acetone- <i>d</i> ₆ , 700 MHz)	14		
14	Figure S12. ¹³ C NMR and DEPT spectra of isochromophilone A (1) (acetone- d_6 ,			
	175 MHz)			
15	Figure S13. HSQC spectrum of isochromophilone A (1) (acetone- d_6)	16		
16	Figure S14. NOESY spectrum of isochromophilone A (1) (acetone- d_6)			
17	Figure S15. ¹ H NMR spectrum of isochromophilone B (2) (CD ₃ OD, 700 MHz)			
18	Figure S16. ¹³ C NMR and DEPT spectra of isochromophilone B (2) (CD ₃ OD,			
	175 MHz)			
19	Figure S17. HSQC spectrum of isochromophilone B (2) (CD ₃ OD)	19		
20	Figure S18. HMBC spectrum of isochromophilone B (2) (CD ₃ OD)	19		
21	Figure S19. ¹ H- ¹ H COSY spectrum of isochromophilone B (2) (CD ₃ OD)	20		
22	Figure S20. NOESY spectrum of isochromophilone B (2) (CD ₃ OD)	20-21		
23	Figure S21. Positive and negative LR-ESI-MS spectra of isochromophilone B (2)			
24	Figure S22. Negative HR-ESI-MS spectrum of isochromophilone B (2)	22-23		
25	Figure S23. UV spectrum of isochromophilone B (2)	23		
26	Figure S24. IR spectrum of isochromophilone B (2)	24		
27	Figure S25 . ¹ H NMR spectrum of isochromophilone B (2) (acetone- <i>d</i> ₆ , 700 MHz)	24		
28	Figure S26. ¹³ C NMR spectrum of isochromophilone B (2) (acetone- d_6 , 175	25		
	MHz)			
29	Figure S27. HSQC spectrum of isochromophilone B (2) (acetone- d_6)	25		
30	Figure S28. HMBC spectrum of isochromophilone B (2) (acetone- d_6)	26		
31	Figure S29. 1 H- 1 H COSY spectrum of isochromophilone B (2) (acetone- d_{6})	26		
32	Figure S30. NOESY spectrum of isochromophilone B (2) (acetone- d_6)	27		
33	Figure S31. ¹ H NMR spectrum of isochromophilone C (3) (CD ₃ OD, 700 MHz)	28		
34	Figure S32. ¹³ C NMR and DEPT spectra of isochromophilone C (3) (CD ₃ OD,	28-29		
	175 MHz)			
35	Figure S33. HSQC spectrum of isochromophilone C (3) (CD ₃ OD)	29		
36	Figure S34. HMBC spectrum of isochromophilone C (3) (CD ₃ OD)	30		

37	Figure S35. ¹ H- ¹ H COSY spectrum of isochromophilone C (3) (CD ₃ OD)	30
38	Figure S36. NOESY spectrum of isochromophilone C (3) (CD ₃ OD)	31
39	Figure S37. Positive and negative LR-ESI-MS spectra of isochromophilone C (3)	32
40	Figure S38. Positive HR-ESI-MS spectrum of isochromophilone C (3)	33
41	Figure S39. UV spectrum of isochromophilone C (3)	34
42	Figure S40. IR spectrum of isochromophilone C (3)	35
43	Figure S41. ¹ H NMR spectrum of isochromophilone D (4) (CD ₃ OD, 700 MHz)	35
44	Figure S42. ¹³ C NMR and DEPT spectra of isochromophilone D (4) (CD ₃ OD, 175 MHz)	36
45	Figure S43. HSQC spectrum of isochromophilone D (4) (CD ₃ OD)	37
46	Figure S44. HMBC spectrum of isochromophilone D (4) (CD ₃ OD)	37
47	Figure S45. ¹ H- ¹ H COSY spectrum of isochromophilone D (4) (CD ₃ OD)	38
48	Figure S46. NOESY spectrum of isochromophilone D (4) (CD ₃ OD)	38-39
49	Figure S47. Positive and negative LR-ESI-MS spectra of isochromophilone D (4)	39-40
50	Figure S48. Positive HR-ESI-MS spectrum of isochromophilone D (4)	40
51	Figure S49. UV spectrum of isochromophilone D (4)	41
52	Figure S50. IR spectrum of isochromophilone D (4)	42
53	Figure S51. ¹ H NMR spectrum of isochromophilone E (5) (CDCl ₃ , 700 MHz)	42
54	Figure S52. ¹³ C NMR and DEPT spectra of isochromophilone E (5) (CDCl ₃ , 175	43
	MHz)	
55	Figure S53. HSQC spectrum of isochromophilone E (5) (CDCl ₃)	44
56	Figure S54. HMBC spectrum of isochromophilone E (5) (CDCl ₃)	44
57	Figure S55. ¹ H- ¹ H COSY spectrum of isochromophilone E (5) (CDCl ₃)	45
58	Figure S56. NOESY spectrum of isochromophilone E (5) (CDCl ₃)	45-46
59	Figure S57 . ¹ H NMR spectrum of isochromophilone E (5) (acetone- <i>d</i> ₆ , 700 MHz)	46
60	Figure S58. ¹³ C NMR and DEPT spectra of isochromophilone E (5) (acetone- d_6 ,	47
	175 MHz)	
61	Figure S59. HSQC spectrum of isochromophilone E (5) (acetone- d_6)	48
62	Figure S60. HMBC spectrum of isochromophilone $E(5)$ (acetone- d_6)	48
63	Figure S61. 1 H- 1 H COSY spectrum of isochromophilone E (5) (acetone- d_{6})	49
64	Figure S62. NOESY spectrum of isochromophilone E (5) (acetone- d_6)	49-50
65	Figure S63. Positive HR-ESI-MS spectrum of isochromophilone E (5)	50
66	Figure S64. UV spectrum of isochromophilone E (5)	51
67	Figure S65. IR spectrum of isochromophilone E (5)	51
68	Figure S66 . ¹ H NMR spectrum of isochromophilone F (6) (CD ₃ OD, 700 MHz)	52
69	Figure S67. ¹³ C NMR and DEPT spectra of isochromophilone F (6) (CD ₃ OD, 175 MHz)	52-53
70	Figure S68. HSQC spectrum of isochromophilone F (6) (CD ₃ OD)	53
71	Figure S69. HMBC spectrum of isochromophilone F (6) (CD ₃ OD)	54
72	Figure S70. ¹ H- ¹ H COSY spectrum of isochromophilone F (6) (CD ₃ OD)	54
73	Figure S71. NOESY spectrum of isochromophilone F (6) (CD ₃ OD)	55
74	Figure S72 . ¹ H NMR spectrum of isochromophilone F (6) (DMSO- <i>d</i> ₆ , 700 MHz)	56
75	Figure S73. ¹³ C NMR and DEPT spectra of isochromophilone F (6) (DMSO- d_6 ,	56-57
	175 MHz)	

76	Figure S74. HSQC spectrum of isochromophilone $F(6)$ (DMSO- d_6)						
77	Figure S75. HMBC spectrum of isochromophilone F (6) (DMSO- <i>d</i> ₆)						
78	Figure S76. ¹ H- ¹ H COSY spectrum of isochromophilone F (6) (DMSO- <i>d</i> ₆)						
79	Figure S77. NOESY spectrum of isochromophilone F (6) (DMSO- d_6)						
80	Figure S78. Positive and negative LR-ESI-MS spectra of isochromophilone F (6)	60					
81	Figure S79. Positive HR-ESI-MS spectrum of isochromophilone F (6)	61					
82	Figure S80. UV spectrum of isochromophilone F (6)	62					
83	Figure S81. IR spectrum of isochromophilone F (6)	63					
84	Figure S82. ¹ H NMR spectrum of ((1 <i>E</i> ,3 <i>E</i>)-3,5-dimethylhepta-1,3-dien-1-yl)-						
	2,4-dihydroxy-3-methylbenzaldehyde (11) (CD ₃ OD, 700 MHz)						
85	Figure S83. ¹³ C NMR and DEPT spectra of ((1E,3E)-3,5-dimethylhepta-1,3-dien-						
	1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (11) (CD ₃ OD, 175 MHz)						
86	Figure S84. HSQC spectrum of ((1 <i>E</i> ,3 <i>E</i>)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-	65					
	dihydroxy-3-methylbenzaldehyde (11) (CD ₃ OD)						
87	Figure S85. HMBC spectrum of ((1 <i>E</i> ,3 <i>E</i>)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-	65					
	dihydroxy-3-methylbenzaldehyde (11) (CD ₃ OD)						
88	Figure S86. ¹ H- ¹ H COSY spectrum of ((1 <i>E</i> ,3 <i>E</i>)-3,5-dimethylhepta-1,3-dien-1-	66					
	yl)-2,4-dihydroxy-3-methylbenzaldehyde (11) (CD ₃ OD)						
89	Figure S87. Negative LR-ESI-MS spectrum of ((1 <i>E</i> ,3 <i>E</i>)-3,5-dimethylhepta-1,3-	66					
	dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (11)						
90	Table S2. Energies of 1 at MMFF94 force field.	67					
91	Table S3. Energies of 1 at $B3LYP/6-31+g(d, p)$ level in methanol.	67-68					
92	Figure S88. The optimized conformers and equilibrium populations of	68-69					
	isochromophilone A (1)						
93	Table S4. Energies of 3 at MMFF94 force field.	69					
94	Table S5. Energies of 3 at $B3LYP/6-31+g(d, p)$ level in methanol.	69					
95	Figure S89. The optimized conformers and equilibrium populations of	70					
	isochromophilone C (3)						
96	Table S6. Energies of 4 at MMFF94 force field.	70-71					
97 88	Table S7. Energies of 4 at $B3LYP/6-31+g(d, p)$ level in methanol.	71					
98	Figure S90. The optimized conformers and equilibrium populations of	71-72					
	isochromophilone D (4)						
99 100	Table S8. Energies of 5 at MMFF94 force field.	72					
100	Table S9. Energies of 5 at $B3LYP/6-31+g(d, p)$ level in methanol.	73					
101	Figure S91. The optimized conformers and equilibrium populations of	73-74					
103	Isochromophilone E (5)	74					
102	Figure S92. Experimental and calculated ECD spectra of compound 5	74					
103	Table S10. Energies of 0 at MINIFF94 force field. Table S11. Energies of 6 at $D21VD/(-21+c(1-r))$ is mother all	74-75					
104 10 <i>5</i>	Table 511. Energies of 0 at BSLYP/0-51+g(0 , \mathbf{p}) level in methanol.	13					
105	Figure 595. The optimized conformers and equilibrium populations of isochromophilons $\Gamma(G)$	15-11					
107	ISOCHTOTHOPHIONE F (0)						
100	Toble S12 Specific data of the helf bendwidth and LW shifts for compounds 1						
10/	Table S12. Specific data of the half-bandwidth and UV shifts for compounds 1, 77						
	J-U.						

108	Figure S95. Effects of isochromophilone D (4) on cell cycle in 786-O cells.				
109	The physicochemical data of the known compounds 7–12.				
110	Figure S96. The strain's (Diaporthe sp. SCSIO 41011) ITS sequence of the	80			
	rDNA.				
111	References	80			

Scheme S1. Proposed chemical formations of 3–5.

	1 ^a		2 ^a		5 ^b		6 ^c	
pos.	$\delta_{ m H}$	$\delta_{\rm C,}$ type						
1	6.65, s	139.7, CH	6.66, s	139.9, CH	7.98, s	150.3, CH	6.05, s	96.4, CH
3		154.5, C		154.7, C		157.6, C		157.2, C
4	6.15, s	104.3, CH	6.14, s	104.2, CH	6.62, s	105.8, CH	6.36, s	102.0, CH
4a		127.6, C		127.7, C		140.6, C		143.9, C
5		113.0, C		111.3, C		108.7, C		122.5, C
6	4.23, s	76.2, CH	3.93, s	85.7, CH		184.0, C		186.3, C
7		84.4, C		84.7, C		86.8, C		86.1, C
8	3.64, overlapped	38.7, CH	3.62, overlapped	39.3, CH		155.8, C		72.5, C
8a		114.4, C		114.2, C		110.5, C		65.1, C
9	6.08, d (16.1)	119.2, CH	6.06, d (16.1)	119.1, CH	6.12, d (16.1)	116.1, CH	6.42, d (16.1)	119.6, CH
10	6.78, d (16.1)	138.4, CH	6.78, d (16.1)	138.6, CH	7.11, d (16.1)	142.9, CH	7.09, d (16.1)	142.5, CH
11		133.5, C		133.4, C		132.1, C		134.0, C
12	5.48, d (10.0)	145.0, CH	5.49, d (10.0)	145.0, CH	5.72, d (10.0)	148.8, CH	5.79, d (10.0)	147.9, CH
13	2.46, m	35.9, CH	2.48, m	35.9, CH	2.48, m	35.3, CH	2.48, m	34.9, CH
14	1.27-1.43, m	31.3, CH ₂	1.29–1.43, m	31.3, CH ₂	1.30-1.43, m	30.2, CH ₂	1.27–1.43, m	30.0, CH ₂
15	0.86, t (7.7)	12.3, CH ₃	0.87, t (7.7)	12.2, CH ₃	0.88, t (7.7)	12.1, CH ₃	0.83, t (7.7)	12.3, CH ₃
16	1.00, d (7.0)	20.8, CH ₃	1.00, d (7.0)	20.9, CH ₃	1.00, d (7.0)	20.4, CH ₃	0.97, d (7.0)	20.6, CH ₃
17	1.81, s	12.6, CH ₃	1.82, s	12.6, CH ₃	1.86, s	12.6, CH ₃	1.81, s	12.7, CH ₃
18	1.19, s	18.4, CH ₃	1.21, s	18.8, CH ₃	1.63, s	25.9, CH ₃	1.58, s	18.7, CH ₃
19			3.62, s	61.1, CH ₃				
1′		173.0, C		172.7, C		168.0, C		167.1, C
2'	3.60, overlapped	54.4, CH	3.62, overlapped	54.1, CH		125.7, C		103.6, C
3'		202.9, C		202.7, C		100.7, C		161.4, C
4′	2.50, s	30.1, CH ₃	2.51, s	30.1, CH ₃	1.64, s	22.1, CH ₃	2.08, s	15.8, CH ₃
5'					3.23, s	49.3, CH ₃		
6'					3.19, s	48.6, CH ₃		

Table S1. ¹H (700 MHz) and ¹³C NMR (175 MHz) Data for Compounds 1–2, 5–6 (δ in ppm, J in Hz)

^aIn CD₃OD. ^bIn CDCl₃. ^cIn DMSO-*d*₆

Figure S1. ¹H NMR spectrum of isochromophilone A (1) (CD₃OD, 700 MHz)

Figure S2. ¹³C NMR and DEPT spectra of isochromophilone A (1) (CD₃OD, 175 MHz)

Figure S3. HSQC spectrum of isochromophilone A (1) (CD₃OD)

Figure S4. HMBC spectrum of isochromophilone A (1) (CD₃OD)

Figure S5. ¹H-¹H COSY spectrum of isochromophilone A (1) (CD₃OD)

Figure S6. NOESY spectrum of isochromophilone A (1) (CD₃OD)

Figure S7. Positive and negative LR-ESI-MS spectra of isochromophilone A (1)

Figure S8. Negative HR-ESI-MS spectrum of isochromophilone A (1)

Figure S9. UV spectrum of isochromophilone A (1)

Figure S10. IR spectrum of isochromophilone A (1)

Figure S11. ¹H NMR spectrum of isochromophilone A (1) (acetone-*d*₆, 700 MHz)

Figure S12. ¹³C NMR and DEPT spectra of isochromophilone A (1) (acetone- d_6 , 175 MHz)

Figure S13. HSQC spectrum of isochromophilone A (1) (acetone-d₆)

Figure S14. NOESY spectrum of isochromophilone A (1) (acetone-d₆)

Figure S15. ¹H NMR spectrum of isochromophilone B (2) (CD₃OD, 700 MHz)

Figure S16. ¹³C NMR and DEPT spectra of isochromophilone B (2) (CD₃OD, 175 MHz)

Figure S17. HSQC spectrum of isochromophilone B (2) (CD₃OD)

Figure S18. HMBC spectrum of isochromophilone B (2) (CD₃OD)

Figure S19. ¹H-¹H COSY spectrum of isochromophilone B (2) (CD₃OD)

Figure S20. NOESY spectrum of isochromophilone B (2) (CD₃OD)

Figure S21. Positive and negative LR-ESI-MS spectra of isochromophilone B (2)

Figure S22. Positive and negative HR-ESI-MS spectra of isochromophilone B (2)

Figure S23. UV spectrum of isochromophilone B (2)

Figure S24. IR spectrum of isochromophilone B (2)

Figure S25. ¹H NMR spectrum of isochromophilone B (2) (acetone-d₆, 700 MHz)

Figure S26. ¹³C NMR spectrum of isochromophilone B (2) (acetone-d₆, 175 MHz)

Figure S27. HSQC spectrum of isochromophilone B (2) (acetone- d_6)

Figure S28. HMBC spectrum of isochromophilone B (2) (acetone-d₆)

Figure S29. ¹H-¹H COSY spectrum of isochromophilone B (2) (acetone-*d*₆)

Figure S30. NOESY spectrum of isochromophilone B (2) (acetone- d_6)

Figure S31. ¹H NMR spectrum of isochromophilone C (3) (CD₃OD, 700 MHz)

Figure S32. ¹³C NMR and DEPT spectra of isochromophilone C (3) (CD₃OD, 175 MHz)

Figure S33. HSQC spectrum of isochromophilone C (3) (CD₃OD)

Figure S34. HMBC spectrum of isochromophilone C (3) (CD₃OD)

Figure S35. $^{1}H^{-1}H$ COSY spectrum of isochromophilone C (3) (CD₃OD)

Figure S36. NOESY spectrum of isochromophilone C (3) (CD₃OD)

Figure S37. Positive and negative LR-ESI-MS spectra of isochromophilone C (3)

Figure S38. Positive HR-ESI-MS spectrum of isochromophilone C (3)

Figure S39. UV spectrum of isochromophilone C (3)

() SHIMADZU

Figure S40. IR spectrum of isochromophilone C (3)

Figure S41. ¹H NMR spectrum of isochromophilone D (4) (CD₃OD, 700 MHz)

Figure S42. ¹³C NMR and DEPT spectra of isochromophilone D (4) (CD₃OD, 175 MHz)

Figure S43. HSQC spectrum of isochromophilone D (4) (CD₃OD)

Figure S44. HMBC spectrum of isochromophilone D (4) (CD₃OD)

Figure S45. ¹H-¹H COSY spectrum of isochromophilone D (4) (CD₃OD)

Figure S46. NOESY spectrum of isochromophilone D (4) (CD₃OD)

Figure S47. Positive and negative LR-ESI-MS spectra of isochromophilone D (4)

Figure S48. Positive HR-ESI-MS spectrum of isochromophilone D (4)

Figure S49. UV spectrum of isochromophilone D (4)

Figure S50. IR spectrum of isochromophilone D (4)

Figure S51. ¹H NMR spectrum of isochromophilone E (5) (CDCl₃, 700 MHz)

Figure S52. ¹³C NMR and DEPT spectra of isochromophilone E (5) (CDCl₃, 175 MHz)

Figure S53. HSQC spectrum of isochromophilone E (5) (CDCl₃)

Figure S54. HMBC spectrum of isochromophilone E (5) (CDCl₃)

Figure S55. ¹H-¹H COSY spectrum of isochromophilone E (5) (CDCl₃)

Figure S56. NOESY spectrum of isochromophilone E (5) (CDCl₃)

Figure S57. ¹H NMR spectrum of isochromophilone E (5) (Acetone-*d*₆, 700 MHz)

Figure S58. ¹³C NMR and DEPT spectra of isochromophilone E (5) (acetone-*d*₆, 175 MHz)

Figure S59. HSQC spectrum of isochromophilone E (5) (acetone-d₆)

Figure S60. HMBC spectrum of isochromophilone E (5) (acetone- d_6)

Figure S61. ¹H-¹H COSY spectrum of isochromophilone E (5) (acetone-*d*₆)

Figure S62. NOESY spectrum of isochromophilone E (5) (acetone- d_6)

Figure S63. Positive HR-ESI-MS spectrum of isochromophilone E (5)

Figure S64. UV spectrum of isochromophilone E (5)

() SHIMADZU

Figure S65. IR spectrum of isochromophilone E (5)

Figure S66. ¹H NMR spectrum of isochromophilone F (6) (CD₃OD, 700 MHz)

Figure S67. ¹³C NMR and DEPT spectra of isochromophilone F (6) (CD₃OD, 175 MHz)

Figure S68. HSQC spectrum of isochromophilone F (6) (CD₃OD)

Figure S69. HMBC spectrum of isochromophilone F (6) (CD₃OD)

Figure S70. ¹H-¹H COSY spectrum of isochromophilone F (6) (CD₃OD)

Figure S71. NOESY spectrum of isochromophilone F (6) (CD₃OD)

Figure S72. ¹H NMR spectrum of isochromophilone F (6) (DMSO-*d*₆, 700 MHz)

Figure S73. ¹³C NMR and DEPT spectra of isochromophilone F (6) (DMSO-*d*₆, 175 MHz)

Figure S74. HSQC spectrum of isochromophilone F (6) (DMSO-d₆)

Figure S75. HMBC spectrum of isochromophilone F (6) (DMSO-d₆)

Figure S76. ¹H-¹H COSY spectrum of isochromophilone F (6) (DMSO-*d*₆)

Figure S77. NOESY spectrum of isochromophilone F (6) (DMSO-d₆)

Bruker Compass DataAnalysis 4.0 printed: 9/21/2017 9:08:20 AM Page 1 of 1

Figure S78. Positive and negative LR-ESI-MS spectra of isochromophilone F (6)

Figure S79. Positive HR-ESI-MS spectrum of isochromophilone F (6)

Figure S80. UV spectrum of isochromophilone F (6)

Figure S81. IR spectrum of isochromophilone F (6)

Figure S82. ¹H NMR spectrum of ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (**11**) (CD₃OD, 700 MHz)

Figure S83. ¹³C NMR and DEPT spectra of ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (**11**) (CD₃OD, 175 MHz)

Figure S84. HSQC spectrum of ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (**11**) (CD₃OD)

Figure S85. HMBC spectrum of ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (11) (CD₃OD)

Figure S86. ¹H-¹H COSY spectrum of ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (**11**) (CD₃OD)

Figure S87. Negative LR-ESI-MS spectrum of ((1E,3E)-3,5-dimethylhepta-1,3-dien-1-yl)-2,4-dihydroxy-3-methylbenzaldehyde (11)

The optimized conformers and equilibrium populations of compounds (1, 3–6)

The optimized conformers were calculated at the B3LYP/6-31+g(d, p) level. Equilibrium populations are in parentheses.

Configuration	Conformer	Energy (kcal/mol)	Population (%)
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	1	169.73	21.5
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	2	170.36	16.7
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	3	170.67	14.8
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	4	173.08	5.6
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	5	173.72	4.3
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	6	174.02	3.8
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2' <i>R</i>)- 1	1	169.73	18.7
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2' <i>R</i>)- 1	2	170.36	14.5
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2' <i>R</i>)- 1	3	170.67	12.8
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2' <i>R</i>)- 1	4	170.89	11.7
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2' <i>R</i>)- 1	5	173.08	4.8
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2' <i>R</i>)- 1	6	173.72	3.7
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	1	169.73	18.8
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	2	170.36	14.6
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	3	170.67	12.9
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	4	170.90	11.7
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	5	173.08	4.9
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	6	173.72	3.8

 Table S2. Energies of 1 at MMFF94 force field.

Table S3. Energies of 1 at B3LYP/6–31+g(d, p) level in methanol.

Configuration	Conformer	E (Hartree)	E (kcal/mol)	Population (%)
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	1	-1729.3803988	-1085203.49	64.23
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	2	-1729.3780158	-1085202.00	5.14
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	3	-1729.3761456	-1085200.83	0.71
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	4	-1729.3795967	-1085202.99	27.45
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	5	-1729.3772067	-1085201.49	2.18
(6 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,2' <i>S</i>)- 1	6	-1729.3753364	-1085200.32	0.30
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2′ <i>R</i>)- 1	1	-1729.3804368	-1085203.53	59.02
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2′ <i>R</i>)- 1	2	-1729.3780390	-1085202.01	4.65
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2′ <i>R</i>)- 1	3	-1729.3761470	-1085200.83	0.63
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2′ <i>R</i>)- 1	4	-1729.3785771	-1085202.35	8.22
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2′ <i>R</i>)- 1	5	-1729.3796458	-1085203.02	25.52
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,2′ <i>R</i>)- 1	6	-1729.3772282	-1085201.50	1.97
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	1	-1729.3803988	-1085203.49	59.04
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	2	-1729.3780159	-1085202.00	4.72
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	3	-1729.3761456	-1085200.83	0.65
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	4	-1729.3785557	-1085202.34	8.37

(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	5	-1729.3795965	-1085202.99	25.22
(6 <i>S</i> ,7 <i>S</i> ,8 <i>R</i> ,13 <i>R</i> ,2' <i>R</i>)- 1	6	-1729.3772067	-1085201.49	2.00

(6*R*,7*R*,8*S*,13*S*,2'*S*)-**1**

Conf.1 (64.23%)

Conf.3 (0.71%)

Conf.4 (27.45%)

Conf.5 (2.18%)

Conf.6 (0.30%)

(6*S*,7*S*,8*R*,13*S*,2′*R*)-**1**

Conf.2 (4.65%)

Conf.4 (8.22%)

Conf.5 (25.52%)

Conf.6 (1.97%)

(6*S*,7*S*,8*R*,13*R*,2'*R*)-**1**

Conf.1 (59.04%)

Conf.2 (4.72%)

Conf.3 (0.65%)

Conf.4 (8.37%)Conf.5 (25.22%)Conf.6 (2.00%)Figure S88. The optimized conformers and equilibrium populations of isochromophilone A (1)

Configuration	Conformer	Energy (kcal/mol)	Population (%)
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	1	230.92	35.2%
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	2	232.50	18.6%
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	3	234.28	9.1%
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	4	235.35	5.9%
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	5	236.07	4.4%
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	6	236.49	3.7%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	1	230.92	32.5%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	2	232.50	17.2%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	3	234.27	8.4%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	4	235.35	5.4%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	5	235.86	4.4%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	6	236.21	3.8%
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>S</i>)- 3	7	236.28	3.7%

 Table S4. Energies of 3 at MMFF94 force field.

Table S5. Energies of 3 at B3LYP/6–31+g(d, p) level in methanol.

Configuration	Conformer	E (Hartree)	E (kcal/mol)	Population (%)
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	1	-1883.2614337	-1181765.38	53.09
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	2	-1883.2604074	-1181764.74	17.89
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	3	-1883.2605962	-1181764.86	21.85
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	4	-1883.2591219	-1181763.93	4.58
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	5	-1882.9273271	-1181761.52	0.08
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>R</i>)- 3	6	-1883.2585576	-1181763.58	2.52
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	1	-1883.2614274	-1181765.38	49.05
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	2	-1883.2604423	-1181764.76	17.75
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	3	-1883.2606114	-1181764.87	21.41
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	4	-1883.2591585	-1181763.95	4.20
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	5	-1883.2595864	-1181764.22	7.44
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	6	-1883.2553047	-1181761.54	0.07
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>S</i>)- 3	7	-1883.2553621	-1181761.57	0.07

(7R, 8S, 13S, 1'S, 2'R)-3

Figure S89. The optimized conformers and equilibrium populations of isochromophilone C (3)

 Table S6. Energies of 4 at MMFF94 force field.

	0 6		
Configuration	Conformer	Energy (kcal/mol)	Population (%)
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	1	226.33	48.5
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	2	229.68	12.5
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	3	230.76	8.1
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	4	231.52	6.0
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	5	231.78	5.4
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	6	232.05	4.8

(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>R</i>)- 4	7	232.28	4.4
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	1	226.33	49.6
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	2	229.68	12.8
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	3	230.76	8.3
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	4	231.57	6.0
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	5	231.73	5.6
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	6	232.08	4.9
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	7	232.25	4.6

Table S7. Energies of **4** at B3LYP/6-31+g(d, p) level in methanol.

Configuration	Conformer	E (Hartree)	E (kcal/mol)	Population (%)
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>R</i>)- 4	1	-1883.2610978	-1181765.17	61.94
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>R</i>)- 4	2	-1883.2602894	-1181764.66	26.29
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1′ <i>R</i> ,2′ <i>R</i>)- 4	3	-1883.2588291	-1181763.75	5.59
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	4	-1883.2549615	-1181761.32	0.09
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	5	-1883.2549735	-1181761.33	0.09
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	6	-1883.2582402	-1181763.38	2.99
(7 <i>R</i> ,8 <i>S</i> ,13 <i>S</i> ,1' <i>R</i> ,2' <i>R</i>)- 4	7	-1883.2582402	-1181763.38	2.99
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	1	-1883.2610907	-1181765.17	61.67
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	2	-1883.2602977	-1181764.67	26.60
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	3	-1883.2588443	-1181763.76	5.70
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	4	-1883.2549643	-1181761.32	0.09
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	5	-1883.2550169	-1181761.35	0.10
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1′ <i>S</i> ,2′ <i>S</i>)- 4	6	-1883.2582135	-1181763.36	2.92
(7 <i>S</i> ,8 <i>R</i> ,13 <i>S</i> ,1' <i>S</i> ,2' <i>S</i>)- 4	7	-1883.2582135	-1181763.36	2.92

(7*R*,8*S*,13*S*,1′*R*,2′*R*)-**4**

Conf.1 (61.94%)

Conf.4 (0.09%)

Conf.2 (26.29%)

Conf.5 (0.09%)

Conf.3 (5.59%)

Conf.6 (2.99%)

Conf.7 (2.99%)

Conf.7 (2.92%)

Figure S90. The optimized conformers and equilibrium populations of isochromophilone D (4)

 Table S8. Energies of 5 at MMFF94 force field.

Configuration	Conformer	Energy (kcal/mol)	Population (%)	
(7 <i>R</i> ,13 <i>S</i>)- 5	1	202.12	18.9	
(7 <i>R</i> ,13 <i>S</i>)- 5	2	202.16	18.6	
(7 <i>R</i> ,13 <i>S</i>)- 5	3	202.92	13.7	
(7 <i>R</i> ,13 <i>S</i>)- 5	4	203.25	12.0	
(7 <i>R</i> ,13 <i>S</i>)- 5	5	206.55	3.2	
(7 <i>R</i> ,13 <i>S</i>)- 5	6	206.59	3.1	
(7 <i>S</i> ,13 <i>S</i>)- 5	1	202.12	18.2	
(7 <i>S</i> ,13 <i>S</i>)- 5	2	202.15	17.9	
(7 <i>S</i> ,13 <i>S</i>)- 5	3	202.91	13.2	
(7 <i>S</i> ,13 <i>S</i>)- 5	4	203.25	11.5	
(7 <i>S</i> ,13 <i>S</i>)- 5	5	204.70	6.4	
(7 <i>S</i> ,13 <i>S</i>)- 5	6	206.27	3.4	
Configuration	Conformer	E (Hartree)	E (kcal/mol)	Population (%)
--------------------------------------	-----------	---------------	--------------	----------------
(7 <i>R</i> ,13 <i>S</i>)- 5	1	-1882.0381194	-1180997.74	2.36
(7 <i>R</i> ,13 <i>S</i>)- 5	2	-1882.0414787	-1180999.85	83.25
(7 <i>R</i> ,13 <i>S</i>)- 5	3	-1882.0375042	-1180997.35	1.23
(7 <i>R</i> ,13 <i>S</i>)- 5	4	-1882.0389323	-1180998.25	5.60
(7 <i>R</i> ,13 <i>S</i>)- 5	5	-1882.0357840	-1180996.27	0.20
(7 <i>R</i> ,13 <i>S</i>)- 5	6	-1882.0391901	-1180998.41	7.36
(7 <i>S</i> ,13 <i>S</i>)- 5	1	-1882.0381302	-1180997.75	1.12
(7 <i>S</i> ,13 <i>S</i>)- 5	2	-1882.0415116	-1180999.87	40.29
(7 <i>S</i> ,13 <i>S</i>)- 5	3	-1882.0374820	-1180997.34	0.56
(7 <i>S</i> ,13 <i>S</i>)- 5	4	-1882.039008	-1180998.30	2.84
(7 <i>S</i> ,13 <i>S</i>)- 5	5	-1882.0418043	-1181000.05	54.95
(7 <i>S</i> ,13 <i>S</i>)- 5	6	-1882.0366723	-1180996.83	0.24

Table S9. Energies of 5 at B3LYP/6–31+g(d, p) level in methanol.

(7*R*,13*S*)-**5**

Conf.2 (83.25%)

Conf.3 (1.23%)

Conf.1 (2.36%)

Conf.4 (5.60%) (7*S*,13*S*)-**5**

Conf.1 (1.12%)

Conf.6 (7.36%)

Conf.3 (0.56%)

Conf.2 (40.29%)

Conf.4 (2.84%)Conf.5 (54.95%)Conf.5 (0.24%)Figure S91. The optimized conformers and equilibrium populations of isochromophilone E (5)

Figure S92. Experimental and calculated ECD spectra of compound 5

Configuration	Conformer	Energy (kcal/mol)	Population (%)
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	1	304.64	47.3
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	2	307.99	12.2
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	3	309.07	7.9
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	4	309.37	7.0
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	5	309.76	6.0
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	6	309.79	5.9
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	7	312.41	2.1
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	1	362.71	48.1
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	2	366.07	12.5
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	3	367.14	8.1
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	4	367.79	6.2
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	5	368.12	5.4
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	6	368.49	4.7
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	7	368.98	3.8
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	1	362.46	23.2
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	2	362.72	21.0
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	3	364.50	10.2
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	4	365.82	6.0
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	5	366.89	3.9
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	6	366.90	3.9

 Table S10. Energies of 6 at MMFF94 force field.

(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	1	308.06	43.3
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	2	311.42	11.2
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	3	312.50	7.2
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	4	312.52	7.2
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	5	312.88	6.2
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)-6	6	313.05	5.8

Table S11. Energies of 6 at B3LYP/6–31+g(d, p) level in methanol.

Configuration	Conformer	E (Hartree)	Energy (kcal/mol)	Population (%)
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	1	-1878.6417771	-1178866.50	58.32
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	2	-1878.6409624	-1178865.99	24.59
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	3	-1878.6394371	-1178865.03	4.88
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	4	-1878.6382607	-1178864.29	1.40
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	5	-1878.6354888	-1178862.56	0.07
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	6	-1878.6354791	-1178862.55	0.07
(1 <i>R</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	7	-1878.6401748	-1178865.50	10.67
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	1	-1878.6228859	-1178854.65	64.19
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	2	-1878.6220782	-1178854.14	27.27
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	3	-1878.6206160	-1178853.22	5.79
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	4	-1878.6167305	-1178850.78	0.09
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	5	-1878.6167063	-1178850.77	0.09
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	6	-1878.6191962	-1178852.33	1.28
(1 <i>S</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	7	-1878.6191951	-1178852.33	1.28
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	1	-1878.6228295	-1178854.61	28.79
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	2	-1878.6228298	-1178854.61	28.80
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	3	-1878.6226870	-1178854.52	24.75
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	4	-1878.6220360	-1178854.11	12.41
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	5	-1878.6205873	-1178853.20	2.67
(1 <i>R</i> ,7 <i>R</i> ,8 <i>R</i> ,8a <i>S</i> ,13 <i>S</i>)- 6	6	-1878.6205543	-1178853.18	2.58
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	1	-1878.6379530	-1178864.10	51.29
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	2	-1878.6371254	-1178863.58	21.33
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	3	-1878.6356408	-1178862.65	4.42
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	4	-1878.6371407	-1178863.59	21.68
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)- 6	5	-1878.6344212	-1178861.88	1.21
(1 <i>S</i> ,7 <i>R</i> ,8 <i>S</i> ,8a <i>R</i> ,13 <i>S</i>)-6	6	-1878.6315568	-1178860.09	0.06

(1*R*,7*R*,8*S*,8a*S*,13*S*)-**6**

Conf.1 (58.32%)

Conf.2 (24.59%)

Conf.3 (4.88%)

Conf.4 (1.40%)

Conf.5 (0.07%)

Conf.6 (0.07%)

Conf.7 (10.67%)

(1*S*,7*R*,8*R*,8a*R*,13*S*)-**6**

Conf.1 (64.19%)

Conf.3 (5.79%)

Conf.4 (0.09%)

Conf.5 (0.09%)

Conf.2 (27.27%)

Conf.6 (1.28%)

Conf.7 (1.28%)

(1*R*,7*R*,8*R*,8a*S*,13*S*)-**6**

Conf.1 (28.79%)

Conf.2 (28.80%)

Conf.3 (24.75%)

(1*S*,7*R*,8*S*,8a*R*,13*S*)-**6**

Figure S93. The optimized conformers and equilibrium populations of isochromophilone F (6)

Figure S94. Experimental and calculated ECD spectra of compound 6

Table S12. Specific data of the half-bandwidth and UV shifts for compounds 1, 3-6

Compounds	Half-bandwidth (eV)	UV shift (nm)
1	0.35	-20
3	0.30	+10
4	0.30	+10

Figure S95. Effects of isochromophilone D (4) on cell cycle in 786-O cells.

The physicochemical data of the known compounds 7–12

5-chloroisorotiorin (7): yellow solid; $[\alpha]_D^{2^5} + 403$ (*c* 0.10, MeOH), literature $[\alpha]_D^{30} + 405$ (*c* 0.02, CHCl₃);¹ ¹H NMR (500 MHz, CD₃OD): 8.89 (1H, s, H-1), 6.80 (1H, s, H-4), 6.34 (1H, d, *J* = 16.0 Hz, H-9), 7.18 (1H, d, *J* = 16.0 Hz, H-10), 5.75 (1H, d, *J* = 9.8 Hz, H-12), 2.55 (1H, m, H-13), 1.48 (1H, m, H-14a), 1.37 (1H, m, H-14b), 0.90 (3H, t, *J* = 7.6 Hz, H₃-15), 1.06 (3H, d, *J* = 6.3 Hz, H₃-16), 1.89 (3H, s, H₃-17), 1.69 (3H, s, H₃-18), 2.58 (3H, s, H₃-4'); ¹³C NMR (125 MHz, CD₃OD): 154.0 (qC, C-1), 160.0 (qC, C-3), 106.9 (CH, C-4), 142.2 (qC, C-4a), 118.8 (qC, C-5), 185.2 (qC, C-6), 88.6 (qC, C-7), 164.8 (qC, C-8), 111.4 (qC, C-8a), 117.4 (CH, C-9), 144.4 (CH, C-10), 133.8 (qC, C-11), 149.8 (CH, C-12), 36.3 (CH, C-13), 31.2 (CH₂, C-14), 12.3 (CH₃, C-15), 20.5 (CH₃, C-16), 12.5 (CH₃, C-17), 26.4 (CH₃, C-18), 169.6 (qC, C-1'), 124.7 (qC, C-2'), 195.2 (qC, C-3'), 30.0 (CH₃, C-4'); LRESIMS *m*/*z* 415.2 [M+H]⁺, 417.2 [M+H+2]⁺; 437.2 [M+Na]⁺, 439.2 [M+Na+2]⁺.

Epi-isochromophilone II (8): yellow solid; $[\alpha]_{D}^{25} + 350$ (*c* 0.18, MeOH), literature $[\alpha]_{D}^{26} + 341$ (*c* 0.15, CHCl₃);² ¹H NMR (700 MHz, CD₃OD): 7.22 (1H, s, H-1), 6.69 (1H, s, H-4), 3.62 (1H, overlapped, H-8), 6.31 (1H, d, J = 16.0 Hz, H-9), 7.10 (1H, d, J = 16.0 Hz, H-10), 5.68 (1H, d, J = 9.8 Hz, H-12), 2.53 (1H, m, H-13), 1.47 (1H, m, H-14a), 1.34 (1H, m, H-14b), 0.89 (3H, t, J = 7.0 Hz, H₃-15), 1.03 (3H, d, J = 7.0 Hz, H₃-16), 1.88 (3H, s, H₃-17), 1.15 (3H, s, H₃-18), 3.12 (1H, dd, J = 2.8, 16.8 Hz, H-1'a), 2.91 (1H, dd, J = 9.8, 16.8 Hz, H-1'b), 2.27 (3H, s, H₃-3'); ¹³C NMR (175)

MHz, CD₃OD): 145.8 (CH, C-1), 159.7 (qC, C-3), 105.8 (CH, C-4), 144.5 (qC, C-4a), 109.4 (qC, C-5), 193.5 (qC, C-6), 75.7 (qC, C-7), 41.5 (CH, C-8), 120.4 (qC, C-8a), 118.1 (CH, C-9), 142.7 (CH, C-10), 133.7 (qC, C-11), 148.0 (CH, C-12), 36.2 (CH, C-13), 31.2 (CH₂, C-14), 12.3 (CH₃, C-15), 20.9 (CH₃, C-16), 12.5 (CH₃, C-17), 20.6 (CH₃, C-18), 40.6 (CH₂, C-1'), 209.2 (qC, C-2'), 30.0 (CH₃, C-3'); HRESIMS m/z 413.1494 [M+Na]⁺ (calcd for C₂₂H₂₇ClNaO₄⁺, 413.1496), 803.3091 [2M+Na]⁺ (calcd for C₄₄H₅₂Cl₂NaO₈⁺, 803.3093).

Isochromophilone III (**9**): yellow solid; $[\alpha]_{D}^{25} + 143$ (*c* 0.05, MeOH), literature $[\alpha]_{D} + 150$ (*c* 1.07, MeOH);³ ¹H NMR (700 MHz, CD₃OD): 5.00 (1H, dd, *J* = 4.9, 11.2 Hz, H-1a), 4.80 (1H, dd, *J* = 11.2, 13.3 Hz, H-1b), 5.96 (1H, s, H-4), 3.90 (1H, d, *J* = 9.1 Hz, H-8), 4.73 (1H, d, *J* = 9.1 Hz, H-8a), 6.12 (1H, d, *J* = 16.0 Hz, H-9), 6.94 (1H, d, *J* = 16.0 Hz, H-10), 5.58 (1H, d, *J* = 9.8 Hz, H-12), 2.48 (1H, m, H-13), 1.43 (1H, m, H-14a), 1.29 (1H, m, H-14b), 0.87 (3H, t, *J* = 7.6 Hz, H₃-15), 1.00 (3H, d, *J* = 7.2 Hz, H₃-16), 1.82 (3H, s, H₃-17), 1.25 (3H, s, H₃-18); ¹³C NMR (175 MHz, CD₃OD): 64.7 (CH₂, C-1), 163.4 (qC, C-3), 104.3 (CH, C-4), 149.3 (qC, C-4a), 115.3 (qC, C-5), 197.7 (qC, C-6), 78.9 (qC, C-7), 80.0 (CH, C-8), 61.7 (CH, C-8a), 119.6 (CH, C-9), 142.1 (CH, C-10), 133.9 (qC, C-11), 147.1 (CH, C-12), 36.1 (CH, C-13), 31.2 (CH₂, C-14), 12.3 (CH₃, C-15), 20.7 (CH₃, C-16), 12.5 (CH₃, C-17), 19.1 (CH₃, C-18); LRESIMS *m*/*z* 353.2 [M+H]⁺, 355.2 [M+H+2]⁺; 375.2 [M+Na]⁺, 377.2 [M+Na]⁺.

Epi-isochromophilone III (10): yellow solid; $[\alpha]_D^{25} + 56$ (*c* 0.10, MeOH), literature $[\alpha]_D^{263} + 49$ (*c* 0.11, MeOH);⁴ ¹H NMR (700 MHz, CD₃OD): 4.56 (1H, dd, *J* = 4.9, 11.2 Hz, H-1a), 4.24 (1H, dd, *J* = 11.2, 13.3 Hz, H-1b), 6.13(1H, s, H-4), 4.04 (1H, d, *J* = 2.8 Hz, H-8), 3.19 (1H, overlapped, H-8a), 6.14 (1H, d, *J* = 16.0 Hz, H-9), 7.00 (1H, d, *J* = 16.0 Hz, H-10), 5.59 (1H, d, *J* = 9.8 Hz, H-12), 2.50 (1H, m, H-13), 1.44 (1H, m, H-14a), 1.30 (1H, m, H-14b), 0.88 (3H, t, *J* = 7.6 Hz, H₃-15), 1.01 (3H, d, *J* = 7.2 Hz, H₃-16), 1.90 (3H, s, H₃-17), 1.34 (3H, s, H₃-18); ¹³C NMR (175 MHz, CD₃OD): 69.7 (CH₂, C-1), 164.0 (qC, C-3), 103.1 (CH, C-4), 146.5 (qC, C-4a), 117.4 (qC, C-5), 195.2 (qC, C-6), 79.1(qC, C-7), 75.8 (CH, C-8), 38.8 (CH, C-8a), 120.5 (CH, C-9), 142.2 (CH, C-10), 133.9 (qC, C-11), 147.1 (CH, C-12), 36.1 (CH, C-13), 31.3 (CH₂, C-14), 12.3 (CH₃, C-15), 20.7 (CH₃, C-16), 12.6 (CH₃, C-17), 23.7 (CH₃, C-18); LRESIMS *m*/*z* 353.2 [M+H]⁺, 355.2 [M+H+2]⁺; 375.2 [M+Na]⁺, 377.2 [M+Na]⁺.

6 - ((1E,3E) - 3,5 - dimethylhepta - 1,3 - dien - 1 - yl) - 2,4 - dihydroxy - 3 - methylbenzaldehyde (11): pale yellow solid, ¹H NMR (700 MHz, CD₃OD): 6.82 (1H, d, *J* = 16.1 Hz, H-1), 6.55 (1H, d, *J* = 16.1 Hz, H-2), 5.35 (1H, d, *J* = 9.8 Hz, H-4), 2.39 (1H, m, H-5), 1.34 (1H, m, H-6a), 1.21 (1H, m, H-6b), 0.78 (3H, t, *J* = 7.7 Hz, H₃-7), 0.90 (3H, d, *J* = 7.0 Hz, H₃-8), 1.79 (3H, s, H₃-9), 6.37 (H, s, H-6'), 9.97 (H, s, H-7'), 1.91 (3H, s, H₃-8'); ¹³C NMR (175 MHz, CD₃OD): 121.3 (CH, C-1), 140.7 (CH, C-2), 134.0 (qC, C-3), 143.3 (CH, C-4), 35.8 (CH, C-5), 31.4 (CH₂, C-6), 12.4 (CH₃, C-7), 21.0 (CH₃, C-8), 12.9 (CH₃, C-9), 143.3 (qC, C-1'), 112.4 (qC, C-2'), 164.7 (qC, C-3'), 111.2 (CH, C-4'), 165.2 (qC, C-5'), 106.8 (CH, C-6'), 194.2 (CH, C-7'), 7.4 (CH₃, C-8'). LRESIMS *m/z* 273.1 [M–H]⁻; 547.4 [2M–H]⁻.

(2*E*,4*E*)-1-(2,6-*dihydroxy*-3,5-*dimethyl-phenyl*)*hexa*-2,4-*dien*-1-*one*) (**12**): yellow solid, ¹H NMR (700 MHz, CD₃OD): 7.12 (1H, d, *J* = 14.7 Hz, H-2), 7.42 (1H, dd, *J* = 11.2, 14.7 Hz, H-3), 6.46 (1H, dd, *J* = 11.2, 14.7 Hz, H-4), 6.32 (1H, m, H-5), 1.91 (3H, d, *J* = 7.0 Hz, H₃-6), 7.55 (3H, s, H₃-

4'), 2.18 (3H, s, H₃-7'), 2.07 (3H, s, H₃-8'); ¹³C NMR (175 MHz, CD₃OD): 193.8 (qC, C-1), 123.5 (CH, C-2), 145.2 (CH, C-3), 132.0 (CH, C-4), 141.6 (CH, C-5), 18.9 (CH₃, C-6), 113.8 (qC, C-1'), 162.7 (qC, C-2'), 117.4 (qC, C-3'), 130.0 (CH, C-4'), 112.0 (qC, C-5'), 163.7 (qC, C-6'), 16.4 (CH₃, C-7'), 8.0 (CH₃, C-8').

Figure S96. The strain's (Diaporthe sp. SCSIO 41011) ITS sequence of the rDNA

>ITS4 (GenBank no. MG548388)

TCTGCCGGGGATCTACTGATCCGAGGTCAATTTCAGAAGTTTGGGGGGTTTTACGGCTGG TCCGCCGGGGCCTTCCGGAGC

GAGGGTTTGACTACTGCGCTCGGGGGTCCCGGTGGGCTCGCCGCTGAATTTGAGGGCCT GCTCCTGGGTGTAGCAGTGCCC

CAACACCAAGCAGTGCTTGAGGGGTGAAATGACGCTCGAACAGGCATGCCCTCCGGA ATGCCAGAGGGCGCAATGTGCGT

TCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCGCATTTCGCTGCG TTCTTCATCGATGCCAGAAC

CAAGAGATCCGTTGTTGAAAGTTTTGATTCATTTGTATTGCTCAGAGTTTCAGTATAAA AACAGAGTTGTTTTGGCCGC

CGGCGTGCCTTGTCCTCACCGGGGTGAGGGGCCTAAAGACCAGCAGCGCCGAGGCAA CAGAGGTATGGTTCACATAGGGT

TTCTGGGTGCGCCGGGGCGCGTTCCAGCAATGATCCCTCCGCTGGTTCACCAACGGAG ACCTTGTTACGACTTTTTACTTCCA

>ITS5 (GenBank no. MG548389)

TACCTTTTGTACGCGGAGGGATCATTGCTGGACGCGCCCCGGCGCACCCAGAAACCCT ATGTGAACCATACCTCTGTTGC

CTCGGCGCTGCTGGTCTTTAGGCCCCTCACCCCGGTGAGGACAAGGCACGCCGGCGG CCAAAACAACTCTGTTTTTATAC

TGAAACTCTGAGCAATACAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCT GGCATCGATGAAGAACGCAGCG

AAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCAC ATTGCGCCCTCTGGCATTCCG

GAGGGCATGCCTGTTCGAGCGTCATTTCACCCCTCAAGCACTGCTTGGTGTTGGGGCA CTGCTACACCCAGGAGCAGGCC

CTCAAATTCAGCGGCGAGCCCACCGGGACCCCGAGCGCAGTAGTCAAACCCTCGCTC CGGAAGGCCCCGGCGGACCAGCC

GTAAAACCCCCAAACTTCTGAAATTTGACCTCGGATCAGGTAGGAATACCCGCTGAAC TTAAGCATATCAATAAGCGGAGGAA

References

1. Chong, R.; King, R. R.; Whalley, W. B. J. Chem. Soc. C: Org. 1971, 3566-3571.

 Kanokmedhakul, S.; Kanokmedhakul, K.; Nasomjai, P.; Louangsysouphanh, S.; Soytong, K.; Isobe, M.; Kongsaeree, P.; Prabpai, S.; Suksamrarn, A. J. Nat. Prod. 2006, 69, 891-895.

3. Arai, N.; Shiomi, K.; Tomoda, H.; Tabata, N.; Yang, D. J.; Masuma, R.; Kawakubo, T.; Omura, S. *J. Antibiot.* **1995**, 48, 696-702.

4. Hemtasin, C.; Kanokmedhakul, S.; Moosophon, P.; Soytong, K.; Kanokmedhakul, K. *Phytochem. Lett.* **2016**, 16, 56-60.