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Figure S1: 1H NMR of compound 1 in chloroform-d at 500 MHz. 
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Figure S2: 1H-1H COSY NMR spectrum of compound 1 in chloroform-d at 500 MHz 
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Figure S3: 1H-13C HSQC of compound 1 in chloroform-d at 500 MHz and 125 MHz 
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Figure S4: 1H-13C HMBC, 8 Hz optimized NMR spectrum of compound 1 in chloroform-d at 500 MHz 

and 125 MHz 
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Table S1: Compounds 2 and 3 1H and 13C NMR Chemical Shifts in chloroform-d at 500 MHz and 125 

MHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S9 

 

Figure S5: 1H NMR spectrum of compound 2 in chloroform-d at 500 MHz  
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Figure S6: X-ray diffraction derived ORTEP plot of compound 2. Compound 2 was dissolved in 

chloroform and placed in a vial with 50:50 methanol:water to create a crystal via solvent diffusion  
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Figure S7: 1H NMR spectrum of compound 3 in chloroform-d at 500 MHz  
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Figure S8: 1H-1H COSY NMR spectrum of compound 3 in chloroform-d at 500 MHz 
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Figure S9: 1H-13C HSQC NMR spectrum of compound 3 in chloroform-d at 500 MHz and 125 MHz 
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Figure S10: 1H-13C HMBC, 4 Hz optimized NMR spectrum of compound 3 in chloroform-d at 500 MHz 

and 125 MHz 
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Figure S11: 1H-13C HMBC, 8 Hz optimized NMR spectrum of compound 3 in chloroform-d at 500 MHz 

and 125 MHz 
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Figure S12: 1H NMR spectrum of compound 4 in acetonitrile-d3 at 700 MHz  
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Figure S13: 1H NMR spectrum, 7.0 to 5.8 ppm expansion, of compound 4 in acetonitrile-d3 at 700 MHz 
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Figure S14: 1H NMR spectrum, 4.8 to 3.6 ppm expansion, of compound 4 in acetonitrile-d3 at 700 MHz 
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Figure S15: 1H NMR spectrum, 2.7 to 1.2 ppm expansion, of compound 4 in acetonitrile-d3 at 700 MHz 
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Figure S16: 13C NMR spectrum of compound 4 in acetonitrile-d3 at 176 MHz 
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Figure S17: DEPT 135-13C NMR spectrum of compound 4 in acetone-d3 at 125 MHz 
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Figure S18: 1H-1H COSY NMR spectrum of compound 4 in acetone-d3 at 500 MHz 
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Figure S19: 1H-13C HSQC NMR spectrum of compound 4 in acetonitrile-d3 at 700 MHz and 176 MHz 
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Figure S20: 1H-13C HMBC, 4 Hz optimized NMR spectrum of compound 4 in acetone-d3 at 500 MHz 

and 125 MHz 
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Figure S21: 1H-13C HMBC, 8 Hz optimized NMR spectrum of compound 4 in acetone-d3 at 500 MHz 

and 125 MHz  
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Figure S22: 1H-13C HMBC, 4 Hz optimized NMR spectrum of compound 4 in acetonitrile-d3 at 700 MHz 

and 176 MHz 
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Figure S23: SEL-TOCSY of compound 4 in acetonitrile-d3 at 700 MHz. Selective irradiation of H-13/13’ 

established the identity of H-12 as belonging to alpha ring system (red) and H-12’as belonging to the beta 

ring system (blue) 
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Figure S24: SEL-TOCSY of compound 4 in acetonitrile-d3 at 700 MHz. Selective irradiation of H-13/13’ 

established the identity of H-11a, H-11b and 12-OH as belonging to the alpha ring system (red) and H-

11’a, H-11’b and 12’-OH as belonging to the beta ring system (blue) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S29 

 

 

Figure S25: SEL-TOCSY of compound 4 in acetonitrile-d3 at 700 MHz. Selective irradiation of H-13/13’ 

established the identity of H-13 as belonging to the alpha ring system (red) and H-13’as belonging to the 

beta ring system (blue) 
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Figure S26: 1H NMR spectrum of compound 5 in acetonitrile-d3 at 700 MHz 
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Figure S27: 1H NMR spectrum of compound 6 in acetonitrile-d3 at 700 MHz 
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Figure S28: 13C NMR spectrum of compound 5 in acetonitrile-d3 at 176 MHz 
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 Figure S29: 13C NMR spectrum of compound 6 in acetonitrile-d3 at 176 MHz 
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Figure S30: 1H-13C HSQC NMR spectrum of compound 5 in acetonitrile-d3 at 700 MHz and 176 MHz 
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Figure S31: 1H-13C HSQC NMR spectrum of compound 6 in acetonitrile-d3 at 700 MHz and 176 MHz 
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Figure S32: 1H-13C HMBC, 4 Hz optimized NMR spectrum of compound 5 in acetonitrile-d3 at 700 MHz 

and 176 MHz 
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Figure S33: 1H-13C HMBC, 4 Hz optimized NMR spectrum of compound 6 in acetonitrile-d3 at 700 MHz 

and 176 MHz 
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Figure S34: Ultra-high resolution 13C NMR of compounds 4, 5, and 6 in acetonitrile-d3 with 37Cl/35Cl 

isotope shifts evident in the C-2 carbon signal. 4 exhibits non-chemical equivalence between the 

anthronyl rings, and thus exhibits two chlorine isotope effects for C-2 and C-2’, while 5 and 6 are have 

chemically equivalent anthronyl rings and exhibit a single C-2 singlet with a Cl isotope shift.    
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Figure S35: IC50 curve of compounds 4-6 against SK-Mel 5 
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HCT-116
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Figure S36: IC50 curve of compounds 4-6 against HCT-116 
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A549
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Figure S37: IC50 curve of compounds 4-6 against A549 
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PC3
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Figure S38: IC50 curve of compounds 4-6 against PC3 

 

 

 

 

 

 

 

 

 

 

 

 

 



S43 

 

MCF7
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Figure S39: IC50 curve of compounds 4-6 against MCF7 
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Figure S40: Antimcirobial single-dose microbroth assay with nalgiovensin (20.5 μg/mL), nalgiolaxin 

(22.7 μg/mL), and allianthrones A-C (43.5 μg/mL). Control antibiotic (125 μg/mL) used: 

chloramphenicol (Bacillus subtilis ATCC 49343), ampicillin (Escherichia coli ATCC 8739), kanamycin 

(Pseudomonas aeruginosa (ATCC 15442), Staphylococcus aureus ATCC 25923), vancomycin 

(Enterococcus faecium ATCC 49032), and amphotericin B (Candida albicans ATCC 90027). Ethanol 

was used as the negative control at 1.25 %v/v. 
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Figure S41: A) Sclerotia-forming and conidia-forming phenotype of A. alliaceus on agar plates were 

propagated into malt-based broth media and grown for 14 days in separate flasks. B) After 14 days of 

growth, the mycelia from each flask were combined into a single flask containing buffered-malt broth and 

placed on a 200 rpm shaker at ambient light and temperature for 15-20 days. C) Before extraction, the flask 

of combined mycelia was streaked out and a phenotypic change was observed, different compared to either 

starting phenotypes. D) The metabolically activated A. alliaceus was propagated into another flask 

containing buffered-malt broth and grown for 15-20 days.   
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Figure S42: Extracted ion chromatographs at day 15 of culture to detect compounds 2 (blue), 3 (red), and 

4-6 (green) in A) sclerotia-forming A. alliaceus, B) conidia-forming A. alliaceus, C) combined hyphae of 

sclerotia-forming and conidia-forming A. alliaceus, and D) coculture induced phenotype. Bianthrone 

formation is only observed after coculture activation 
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Figure S43: Production of 2-6 from phenotype coculture induced Aspergillus alliaceus monitored by 

extracted ion chromatography LCMS. Bianthrone production (gray) peaks around day 20, pH of the 

culture is also presented in yellow.   
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Figure S44: Production of 2-6 in a fresh initiated mixed culture of sclerotia-forming and conidia-forming 

Aspergillus alliaceus monitored by extracted ion chromatography LCMS. Bianthrone production (gray) is 

not observed in freshly combined fungal cultures. pH of the culture is presented in yellow.   
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Figure S45: Production of 1 by sclerotia-forming Aspergillus alliaceus monitored by extracted ion 

chromatography LCMS.  
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Figure S46: Production of 2 and 3 by conidia-forming Aspergillus alliaceus monitored by extracted ion 

chromatography LCMS.  
 

  



S51 

 

 

Figure S47: Conidia-forming A. alliaceus phenotype study on Czapek-Dox agar under A) no light, 25°C, 

B) light, 25°C, C) no light, 37°C and D) light, 37°C with photos taken between five and seven days of 

growth. 
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Figure S48: Sclerotia-forming A. alliaceus phenotype study on Czapek-Dox agar under A) no light, 25°C, 

B) light, 25°C, C) no light, 37°C and D) light, 37°C with pictures taken between five and seven days of 

growth.   
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Figure S49: Molecular phylogenetic analysis of the total loci (Beta-Tubulin Bt2a/Bt2b, Calmodulin CF1M/ 

CF4, and Internal Transcribed Spacer ITS5/4 and ITS1/4) of the Aspergillus alliaceus phenotypes by 

Maximum Likelihood method. The evolutionary history was inferred by using the Maximum Likelihood 

method based on the Tamura-Nei model.1 The tree with the highest log likelihood (-11779.1611) is shown. 

The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial 

tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ 

algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 

approach, and then selecting the topology with superior log likelihood value. The tree is drawn to scale, 

with branch lengths measured in the number of substitutions per site. The analysis involved 11 nucleotide 

sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than 5% alignment 

gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 1243 positions 

in the final dataset. Evolutionary analyses were conducted in MEGA7.2 A. alliaceus strains NRRL 315, 

5108, and 4181 are referred to as the Petromyces alliaceus3 and A. alliaceus strain NRRL 1206 is referred 

to as Aspergillus alliaceus4.  
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GATCCCTACCGA-

TGCATGGGATCTAATGCGTCCCATTACTTCTGCCACGTGTTTGCTAACGGTTTTACAGGCAGA

CCATTTCTGGCGAGCACGGCCTTGACGGCTCCGGTGTGTAAGTACAACCCGTGTACA--

TCTCGAACGAAGGACAATCCGTTGG-CGATGGAAGGGTCTGAAAGGG-

TCTGACGGGAAGGATAGTTACAATGGCTCCTCCGACCTCCAGCTGGAGCGCATGAACGTCTA

CTTCAACGAGGTGCGTACCTCAGATTTTGCAGCCTCCCTAGAAACGCCGTGCAGGCCCTGAC

C—

ACTTCTCCAGGCTAGTGGAAACAAGTATGTTCCTCGTGCCGTCCTCGTCGATCTTGAGCCCG

GTACCATGGACGCCGTCCGCGCAGGTCCCTTANGTCAGCTTTTCCGTCCCGACAACTTCGTTG

ATGGTCTTGGTGGAATGCATACTGACTTGAGTTTTCTTGGGCTCCTAATAGGACAAGGATGG

TGATGGTTAGTACATCATGTTCCATAAAACCCCCCTTCTAGTGCGACCGACAGTTTTCAGCCG

CTATAATCGTCTCCATATTTTTTATTGTTCGATCGGCTGAAGTCTTGGCGTTGATAAATTGAC

TCGATATGCAGGCCAGATCACCACCAAGGAGTTGGGCACTGTGATGCGCTCTCTGGGCCAGA

ACCCTTCTGAGTCGGAACTCCAGGATATGATCAACGAGGTTGATGCCGATAACAATGGCACC

ATCGACTTCCCTGGTACGCGAGGGCTTTCCTACGGCTCACAGACAAAGAAATTCTATTAACG

TTCGATTAGAGTTCCTTACGATGATGGCCAGAAAGATGAAGGATACCGACTCTGAGGAGGA

GATCCGGGAGGCTTTCAAGGTTTTCGACCGTGATAACAACGGCTTTATCTCCGCCGCGGAGC

TGCGCCACGTCATGACCTCCATCGGTGAGAAACTTACCGATGATGAAGTTGATGAGATGATC

CGCGAGGCGGATCAGGACGGTGATGGCCGGATCGATTGTACGTTGAGAACAACTCCCCATTT

CTTTTACCCGCTGAGGATGAATGTGGATGTGAACCAACCTCCCACCCGTGTATACTGTACCTT

CGTTGCTTCGGCGGGCCCGCCGTCATGGCCGCCGGGGGGCTTCTGCCCC-

CGGGCCCGCGCCCGCCGGAGACACATGAACTCTGTCTG-ATGTAGTGAAGTCTGAGTTG-

ATTGTCACACAATCAGTTAAAACTTTCA----

ACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTG

AATTGCAGAATTCCGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGG

GGGGCATGCCTGTCCGAGCGTCATTGCTGCCCATCAAGCACGGCTTGTGTGTTGGGTCCTCG

TCCCCCCCGGGGG-ACGTGCCCGAAAGGCAGCGGCGGCACCGCGTCCG-

GTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGCAGGCCCGGCCGGCGCTGGCCGACGCG

AAAG 

Figure S50: Conidia-forming Aspergillus alliaceus consensus sequence (1545 bp) of Beta-tubulins (black 

letters), Calmodulin (blue letters), and ITS region (green letters) 
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GATCCCTACCGA-

TGCATGGGATCTAATGCGTCCCATTACTTCTGCCACGTGTTTGCTAACGGTTTTACAGGCAGA

CCATTTCTGGCGAGCACGGCCTTGACGGCTCCGGTGTGTAAGTACAACCCGTGTACA--

TCTCGAACGAAGGACAATCCGTTGG-CGATGGAAGGGTCTGAAAGGG-

TCTGACGGGAAGGATAGTTACAATGGCTCCTCCGACCTCCAGCTGGAGCGCATGAACGTCTA

CTTCAACGAGGTGCGTACCTCAGATTTTGCAGCCTCCCTAGAAACGCCGTGCAGGCCCTGAC

C—

ACTTCTCCAGGCTAGTGGAAACAAGTATGTTCCTCGTGCCGTCCTCGTCGATCTTGAGCCCG

GTACCATGGACGCCGTCCGCGCAGGTCCCTTCGGTCAGCTTTTCCGTCCCGACAACTTCGTTG

ATGGTCTTGGTGGAATGCATACTGACTTGAGTTTTCTTGGGCTCCTAATAGGACAAGGATGG

TGATGGTTAGTACATCATGTTCCATAAAACCCCCCTTCTAGTGCGACCGACAGTTTTCAGCCG

CTATAATCGTCTCCATATTTTTTATTGTTCGATCGGCTGAAGTCTTGGCGTTGATAAATTGAC

TCGATATGCAGGCCAGATCACCACCAAGGAGTTGGGCACTGTGATGCGCTCTCTGGGCCAGA

ACCCTTCTGAGTCGGAACTCCAGGATATGATCAACGAGGTTGATGCCGATAACAATGGCACC

ATCGACTTCCCTGGTACGCGAGGGCTTTCCTACGGCTCACAGACAAAGAAATTCTATTAACG

TTCGATTAGAGTTCCTTACGATGATGGCCAGAAAGATGAAGGATACCGACTCTGAGGAGGA

GATCCGGGAGGCTTTCAAGGTTTTCGACCGTGATAACAACGGCTTTATCTCCGCCGCGGAGC

TGCGCCACGTCATGACCTCCATCGGTGAGAAACTTACCGATGATGAAGTTGATGAGATGATC

CGCGAGGCGGATCAGGACGGTGATGGCCGGATCGATTGTACGTTGAGAACAACTCCCCATTT

CTTTTACCCGCTGAGGATGAATGTGGATGTGAACCAACCTCCCACCCGTGTATACTGTACCTT

CGTTGCTTCGGCGGGCCCGCCGTCATGGCCGCCGGGGGGCTTCTGCCCC-

CGGGCCCGCGCCCGCCGGAGACACATGAACTCTGTCTG-ATGTAGTGAAGTCTGAGTTG-

ATTGTCACACAATCAGTTAAAACTTTCA----

ACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTG

AATTGCAGAATTCCGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGG

GGGGCATGCCTGTCCGAGCGTCATTGCTGCCCATCAAGCACGGCTTGTGTGTTGGGTCCTCG

TCCCCCCCGGGGG-ACGTGCCCGAAAGGCAGCGGCGGCACCGCGTCCG-

GTCCTCGAGCGTATGGGGCTTTGTCACCCGCTCTGCAGGCCCGGCCGGCGCTGGCCGACGCG

AAAG 

Figure S51: Sclerotia-forming Aspergillus alliaceus consensus sequence (1545 bp) of Beta-tubulins (black 

letters), Calmodulin (blue letters), and ITS region (green letters) 
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Figure S52. Abbreviated biosynthetic proposal of compounds 2-6.  
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