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Model Hamiltonian and Parameters

Here we provide detailed expressions of all of model Hamiltonians used in the main text.

Tully’s Model I1

V11(R) = A(1− e−BR) (for R > 0)

V11(R) = −A(1− eBR) (for R < 0)

V22(R) = −V11(R)

V12(R) = V21(R) = Ce−DR
2

(S1)
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Tully’s Model II1

V11(R) = 0

V22(R) = −Ae−BR2

+ E0

V12(R) = V21(R) = Ce−DR
2

(S2)

Tully’s Model III1

V11(R) = A

V22(R) = −A

V12(R) = BeCR (for R < 0)

V12(R) = B(2− e−CR) (for R > 0) (S3)

The parameters (in a.u.) of the above three Tully’s models are tabulated below.

model A B C D E0

I 0.01 1.6 0.005 1.0 -

II 0.1 0.28 0.015 0.06 0.05

III 6× 10−4 0.1 0.9 - -

Morse Potential Models2,3

Vii(R) = Di(1− e−ai(R−bi)) + Ei

Vij(R) = Aije
−cij(R−dij)2

Vij(R) = Vji(R) (S4)

The parameters (in a.u.) for the three models used in the main text are tabulated below:
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Model I Model II Model III

i 1 2 3 1 2 3 1 2 3

Di 0.003 0.004 0.003 0.02 0.01 0.003 0.02 0.02 0.003

ai 0.65 0.6 0.65 0.65 0.4 0.65 0.4 0.65 0.65

bi 5.0 4.0 6.0 4.5 4.0 4.4 4.0 4.5 6.0

Ei 0.0 0.1 0.006 0.0 0.01 0.02 0.02 0.0 0.02

ij 12 13 23 12 13 23 12 13 23

Aij 0.002 0.0 0.002 0.005 0.005 0.0 0.005 0.005 0.0

cij 16.0 0.0 16.0 32.0 32.0 0.0 32.0 32.0 0.0

dij 3.40 0.0 4.80 3.66 3.34 0.0 0.02 0.0 0.02

Conical intersection model

The total Hamiltonian for the conical intersection model4 is given by

Ĥ =
∑
j

1

2

[
P 2
j + ω2

jR
2
j

]
+
∑
α

[
Eα +

∑
j

cαjRj

]
|α〉〈α|+ λR10a

[
|1〉〈2|+ |2〉〈1|

]
, (S5)

where Rj ∈ {R1, R6a, R10a}.

The parameters (in eV) are tabulated below

i Ei ci1 ci6a ci10a

1 3.94 0.037 -0.105 0

2 4.84 -0.254 0.149 0

ω1 ω6a ω10a λ

0.126 0.074 0.118 0.262
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7-state FMO complex

The total Hamiltonian for FMO complex5 is given by :

Ĥ = Ĥe + Ĥep

Ĥe =
∑
α

εα|α〉〈α|+
∑
α 6=γ

∆α,γ|α〉〈γ|

Ĥep =
∑
α

∑
jα

[
1

2
(P̂ 2

jα + ω2
jαR̂

2
jα) + cjαR̂jα|α〉〈α|] (S6)

The electronic Hamiltonian (Ĥe) matrix (in cm−1) in the diabatic basis is given by :

Ĥe =



12410 87.7 5.5 5.9 6.7 13.7 9.9

87.7 12530 30.8 8.2 0.7 11.8 4.3

5.5 30.8 12210 53.5 2.2 9.6 6.0

5.9 8.2 53.5 12320 70.7 717.0 63.3

6.7 0.7 2.2 70.7 12480 81.1 1.3

13.7 11.8 9.6 17.0 81.1 12630 39.7

9.9 4.3 6.0 63.3 1.3 39.7 12440



(S7)

Bath Discretization Protocol of the Spin-Boson Model

The coupling parameters and the frequencies for the bath in the Spin-Boson are sampled

based on the discretized spectral density

J(ω) =
π

2

N∑
i=1

c2i
ωi
δ(ω − ωi) (S8)

For spin-boson model, an Ohmic spectral density is used

J(ω) =
π

2
ξωe−ω/ωc , (S9)
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where ξ is the Kondo parameter, and ωc is the cutoff frequency. The vibrational frequencies

and the coupling coefficients are sampled6 based on the following expressions

ωi = −ωc ln
(
1− iω0

ωc

)
(S10)

ci =
√
ξω0ωi. (S11)

Here, for a total of N bath modes, ω0 = ωc
N

(
1− e−ωm/ωc

)
. In addition, ωm was chosen to be

3ωc for the model calculations.

Bath Discretization Protocol of the FMO Model

In the EET model Hamiltonian of the FMO complex,5 each state is coupled to a set of

independent oscillators. The system-bath couplings are characterized by the following Debye

spectral density

J(ω) = 2λ
ωτ

1 + ω2τ 2
, (S12)

where λ is reorganization energy, and τ is the solvent response time.

The vibrational frequencies and the coupling coefficients are sampled based on the fol-

lowing expressions7

ωj = tan

(
j

N
tan−1(ωmτ)

)
(S13)

cj = 2ωj

√
λ

πN
tan−1(ωmτ) (S14)

where N is the total number of bath DOF. Here, ωm was chosen to be 20/τ .
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Validating the MO truncation scheme

Here, we provide the results to validate the truncation scheme used in the main text for

propagating TDSE. Fig. S1A presents the time-dependent energies of both active space

MOs (colored lines) and the MOs adjacent to them (black lines). One can clearly see that

the other MOs are energetically separated from the LUMO to LUMO+9 active space MOs,

with a gap that is at least 0.5 eV. As a consequence, the numerical solutions of TDSE in

the active space should be exactly the same compared to those using the entire set of MOs,

when the initial conditions are also in the same active space. Fig. S1B presents the numerical

solutions of TDSE (see Appendix A of the main text) with the active space (open circles)

and with the entire set of MOs (solid lines), which are numerically indistinguishable.
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Figure S1: (A) Time-dependent MO energies near the active space in the 2H2Pc/C60 model system. The
active space, LUMO to LUMO+9, is depicted with colored MOs. (B) Time-dependent adiabatic populations
of the LUMO to LUMO+6 MOs. Results are obtained by solving TDSE with the entire set of MOs (solid
lines) or only with the active MOs (open circles).
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