2	Supporting information		
3	Metabolic Engineering-Based Rapid Characterization of a Sesquiterpene Cyclase		
4	and the Skeletons of Fusariumdiene and Fusagramineol from Fusarium		
5	graminearum		
6	Guangkai Bian ^{†#} , Anwei Hou ^{†#} , Yujie Yuan [†] , Ben Hu [†] , Shu Cheng [†] , Ziling Ye [‡] ,		
7	Yingtong Di [§] , Zixin Deng ^{†,} , Tiangang Liu ^{†, *}		
8	[†] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of		
9	Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P.		
10	R. China.		
11	[‡] J1 Biotech Co., Ltd., Wuhan 430075, P. R. China.		
12	[§] State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming		
13	Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China.		
14	^{II} Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of		
15	Biotechnology, Wuhan 430075, P. R. China		
16			

17	Table of Contents	
18	Supplementary Materials and Methods	S3-S10
19	Supplementary References	S 11
20	Figures S1-S19	S12-S36
21	Tables S1-S9	S37-S45
22	Coordinates and detailed data for quantum chemical calculations of 1	S46-S48
23		

24 Supplementary Materials and Methods

25 Strains and media

E. coli BL21 (DE3) *F* dcm ompT hsdSB(rB⁻mB⁻)gal was obtained from Invitrogen
(Carlsbad, CA, USA). *S. cerevisiae* CEN.PK2-1D (European Saccharomyces cerevisiae
archive for functional analysis [EUROSCARF] accession number: 30000B) was
purchased from EUROSCARF (Oberuresel, Germany) and cultivated in YPD medium. *F. graminearum* J1-012 was isolated from *Taxus chinensis* and cultivated in PDA medium.
Whole genome sequencing and analysis of *F. graminearum* J1-012 is described in our previous work.¹

Phylogenetic analysis of terpene synthases of genus *Fusarium* and *F. graminearum*J1-012

For genus *Fusarium*, multiple sequence alignment was performed using Muscle. Evolutionary analyses were conducted in MEGA7.² A phylogenetic tree was inferred using the maximum likelihood method based on the Jones-Taylor-Thornton (JTT) matrix-based model. This analysis involved seventy-eight amino acid sequences. All positions with less than 95% site coverage were eliminated. There were a total of 138 positions in the final dataset.

41 Construction of plasmids and mutants

The primers used in this study are listed in Table S1. Strains and plasmids are summarized in Table S2. To construct the plasmid to express sufficient precursor IPP and DMAPP in *S. cerevisiae*, pZY141 was constructed according to the following procedure: the left and right homologous arms of *GAL1710* and the terminator *CPS1* were amplified from *S. cerevisiae* CENPK2-1D using the primer pairs P1/P2, P3/P4, and P5/P6, respectively; *TRP1* was amplified from pRS424 using primer pair P7/P8; *ACT1* and *tHMG1* were amplified from *S. cerevisiae* S288C using primer pairs P9/P10 and P11/P12,

respectively; the promoter PGAL10-PGAL1 and the plasmid backbone were amplified 49 from S. cerevisiae CENPK2-1D and pRS426 using primer pairs P13/P14 and P15/P16, 50 respectively. Then, TRP1, ACT1, and the left homologous arm of GAL1710 were 51 assembled using splicing by overlap extension PCR (SOE-PCR)³ using the primer pair 52 P1/P10; *tHMG1*, *PGAL10-PGAL1*, and *CPS1* were assembled by the same method using 53 the primer pair P11/P6. Finally, the assembled fragments, together with the amplified 54 55 backbone of pRS426 and the right homologous arm of GAL1710, were assembled using 56 the yeast assembly method to generate the final plasmid pZY141.

To overexpress FgFS in *E. coli*, the coding sequence of *FgJ03939* was amplified from 57 the cDNA library of F. graminearum using primer pair P17/P18, and then the fragment 58 was subcloned into pET28a to generate pGB152. To verify the function of FgFS in S. 59 cerevisiae, pGB315 was constructed according to the following procedure: FgJ03939 60 was amplified from pGB152 using primer pair P19/P20; ERG20 was amplified from S. 61 cerevisiae CENPK2-1D using primer pair P21/P22; PGAL1-GAL10 was amplified from 62 pZY141 using primer pair P23/P24; and the plasmid backbone was amplified from 63 pXL144 (constructed by Xiaowei Li, unpublished data) using primer pair P25/P26. 64 Finally, the above amplified fragments were assembled using the Gibson method to 65 generate pGB315.⁴ 66

Plasmid pZY141 was linearized and inserted into the *GAL1710* site of *S. cerevisiae* CENPK2-1D to generate the mutant *S. cerevisiae* ZY141. Thereafter, pGB315 with the downstream sesquiterpene-forming pathway was linearized and inserted into the HIS3 site of *S. cerevisiae* ZY141 to generate *S. cerevisiae* T16.

71 **Protein expression and purification**

Plasmid pGB315 was transformed into *E. coli* BL21 (DE3) and cultivated in 2-L flasks containing 1 L LB medium at 37 $^{\circ}$ C with 50 mg/L kanamycin (KAN). When the OD₆₀₀ reached 0.6–0.8, 0.1 mM IPTG was added to the cultures, which were then cultivated for an additional 6 h at 28 $^{\circ}$ C. The cells were harvested and resuspended in 40 mL buffer A

(50 mM Tris-Cl, 300 mM NaCl, 4 mM β-mercaptoethanol, pH 7.6). Cell disruption was 76 performed using a high-pressure homogenizer and centrifuged at $30,000 \times g$ for 1 h. A 77 Biologic DuoFlow Chromatography System (Bio-Rad Laboratories, Hercules, CA, USA) 78 was used for protein purification. His-tagged proteins were purified by Ni-NTA affinity 79 chromatography (GE Healthcare, Little Chalfont, UK), anion exchange resin (HiTrap Q 80 FF; GE Healthcare), and gel filtration chromatography (HiPrep 16/60 Sephacryl S-200 81 82 HR; GE Healthcare). The purified protein (Figure S4) was then concentrated and preserved in 50 mM Tris buffer (50 mM Tris, 10% glycerol). The protein concentration 83 was measured using a Pierce1 BCA protein assay kit (Thermo Fisher Scientific, Waltham, 84 MA, USA) and recorded on an Enspire Multimode Plate Reader (PerkinElmer, Waltham, 85 86 MA, USA).

87

In vitro assays and kinetic measurements

To test the terpene synthase activity of FgFS, an in vitro assay was carried out as 88 previously described.¹ Reactions were carried out using 10 µM FgFS, 100 µM substrates 89 (GPP, FPP, or GGPP), and 2 mM Mg²⁺ in 200 µL 50 mM Tris-HCl buffer (pH 7.6) with 90 10% glycerol at 30 $\,^{\circ}$ C overnight. The products were extracted with an equal volume of 91 hexane and then detected and analyzed by GC/MS (Figure S6, S7). For steady-state 92 kinetics, 100-µL scale reactions were carried out in 50 mM Tris-HCl buffer (pH 7.6) 93 with 10% glycerol and 50 µL pyrophosphate reagent. Reactions were carried out with 1 94 mg/mL FgFS, 2 mM Mg²⁺, and 1–200 mM substrates (GPP, FPP, and GGPP). Product 95 assays were carried out by measuring the release of pyrophosphate (PPi), which was 96 recorded using an Enspire Multimode Plate Reader, as previously described (Table S3).⁵ 97

98 Expression and functional characterization of FgFS in S. cerevisiae

S. cerevisiae T16 was cultivated in YPD media in a shake flask and then inoculated into
a 5-L fermenter with 2.5 L YPD at 30 °C. A two-stage feeding process was adopted in
this fed-batch fermentation. First, 1.5-L feeding solution with 10 g/L yeast extract and
500 g/L glucose was used to sustain rapid cell growth. When the cells reached the stable

103 phase, 1% galactose was added to the fermenter to induce the production of 104 sesquiterpenes. Ethanol (feeding solution II) was used as carbon source to meet the needs 105 of cell metabolism. The isotopic labeling experiment was carried out in a 5-L fermenter 106 with 2 L YPD. Feeding solution II was replaced with 50 g/L glucose, 450 g/L sodium 107 acetate, and 1% $[1-^{13}C,2-^{2}H_{3}]$ - sodium acetate. The pH was controlled at 6.0 to maintain 108 an acidic environment for normal metabolism. Cell growth and the accumulation of 109 sesquiterpenes were monitored through the fermentation process.

110 Compound isolation and structure elucidation

The sesquiterpenes were isolated from the hexane-extracted layer of the fermentation 111 broth and cells of *S. cerevisiae* T16 (200 mL) using XBridgeTM Prep C18 column (Waters, 112 10×250 mm, 5 µm) and prep-HPLC system with acetonitrile and water as the mobile 113 phase. The first round isolation was carried out according to the following procedure: 114 flow rate, 2.5 mL/min; in the first 85 min, the proportion of acetonitrile was increased 115 using a linear gradient from 20% to 90%; the proportion of acetonitrile was then 116 117 increased to 100% over 1 min and maintained for 10 min; finally, the proportion of acetonitrile was decreased to 20% and maintained for 10 min. Compound 1 was isolated 118 119 with a retention time of 95.2 min (5.6 mg). Compound 4 was isolated with a retention time of 72.4 min (14.2 mg). Compound 6 was isolated with a retention time of 92.4 min 120 (1.5 mg). Compound 8 was isolated with a retention time of 95.2 min (2.3 mg). 121 Compound 2, 3, 5 and 7 were located in the F1 to F4 fractions with retention times of 122 61.3-64.8 min, 65.5-67.3 min, 70.4-72.0 min and 69.9-70.9 min, respectively. 123 Thereafter, compound 2 (25.7 mg), with a retention time of 46.8 min, was isolated from 124 F1 using 75% acetonitrile as the mobile phase at a rate of 0.75 mL/min. Compound 3 125 (40.3 mg), with a retention time of 25.7 min, was isolated from F2 using 70% acetonitrile 126 as the mobile phase at a rate of 2 mL/min. Compound 5 (11.3 mg), with a retention time 127 of 36.5 min, was isolated from F3 using 92% acetonitrile as the mobile phase at a rate of 128 0.6 mL/min. Compound 7 (2.1 mg), with a retention time of 33.2 min, was isolated from 129

F4 using 96% acetonitrile as the mobile phase at a rate of 0.6 mL/min. ¹H NMR and ¹³C
NMR were performed on an Agilent 400 MHz or 600 MHz instrument (DirectDrive2;
Santa Clara, CA, USA).

133 Compound **1**. Colorless oil. $[\alpha]_D^{22} = -13.8$ (*c* 0.4, CHCl₃). For NMR data, see Table S4 134 and Figure S8. HRMS (ESI) calculated for C₁₅H₂₃ [M-H]⁺: m/z 203.1794; m/z found: 135 203.1792.

136 Compound **2**. White solid. $[\alpha]_D^{22} = -45.6$ (*c* 0.26, CHCl₃). For NMR data see Table S5 137 and Figure S9. HRMS (ESI) calculated for C₁₅H₂₅ [M-OH]⁺: m/z 205.1951; m/z found: 138 205.1950.

139 Compound **3**. White solid. $[\alpha]_D^{22} = -72.3$ (*c* 0.25, CHCl₃). For NMR data see Tables S6 140 and Figure S10. HRMS (ESI) calculated for C₁₅H₂₅ [M-OH]⁺: m/z 205.1951; m/z found: 141 205.1951.

142 Compound **4** was identified as nerolidol. Colorless oil. $[\alpha]_{D}^{22} = 20.1$ (*c* 0.04, benzene).

143 ¹H NMR (400 MHz, CDCl₃) δ [ppm] = 5.92 (dd, J = 17.3, 10.8 Hz, 1H), 5.21 (dd, J =

144 17.3, 1.3 Hz, 1H), 5.14 (tt, J = 5.8, 1.3 Hz, 1H), 5.11 – 5.06 (m, 1H), 5.06 (dd, J = 10.8,

145 1.3 Hz, 1H), 2.11 - 2.01 (m, 4H), 2.00 - 1.96 (m, 2H), 1.68 (s, 3H), 1.60 (d, J = 1.2 Hz,

147 [ppm] = 145.0, 135.5, 131.4, 124.1, 124.1, 111.6, 73.5, 41.9, 39.6, 27.8, 26.6, 25.6, 22.6,

6H), 1.60 (d, J = 9.5 Hz, 2H), 1.28 (s, 3H) (Figure S11a), ¹³C NMR (101 MHz, CDCl₃) δ

148 17.6, 15.9 (Figure S11b). HRMS (ESI) calculated for C₁₅H₂₅ [M-OH]+: m/z 205.1951;

$$m/z$$
 found: 205.1940. These data were the same as previously reported.^{1,1}

146

150 Compound 5 was identified as (-)- α -acorenol. Colorless oil. $[\alpha]_{D}^{22} = -30.7$ (c 0.07,

151 CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ [ppm] = 5.45 – 5.39 (m, 1H), 2.40 – 2.30 (m, 1H),

 $152 \qquad 2.03 - 1.90 \; (m, \; 3H), \; 1.89 - 1.85 \; (m, \; 2H), \; 1.85 - 1.80 \; (m, \; 1H), \; 1.80 - 1.70 \; (m, \; 1H), \; 1.67 \; (m,$

153 – 1.64 (m, 3H), 1.55 – 1.45 (m, 2H), 1.43 – 1.35 (m, 1H), 1.26 – 1.24 (m, 1H), 1.21 (s,

- 154 3H), 1.21 (s, 3H), 0.85 (d, J = 6.8 Hz, 3H) (Figure S12a). ¹³C NMR (101 MHz, CDCl₃) δ
- 155 [ppm] = 135.2, 121.2, 73.7, 54.7, 45.0, 41.7, 31.5, 30.6, 30.1, 29.0, 27.9, 27.8, 26.1, 23.3,

- 156 14.9 (Figure S12b). HRMS (ESI) calculated for $C_{15}H_{25}O[M]^+$: m/z 221.1900; m/z found:
- 157 221.1897. These data were the same as previously reported.⁷
- 158 Compound **6** was identified as (E)- β -farnesene. Colorless oil. ¹H NMR (400 MHz,
- 159 CDCl₃) δ [ppm] = 6.3 (dd, J = 17.6, 10.8 Hz, 1H), 5.2 (dd, J = 17.6, 1.1 Hz, 1H), 5.1 -
- 160 5.0 (m, 2H), 5.0 4.9 (m, 3H), 2.2 2.1 (m, 3H), 2.1 1.9 (m, 5H), 1.6 (d, J = 1.5 Hz,
- 161 3H), 1.6 (d, J = 1.5 Hz, 6H) (Figure S13a). ¹³C NMR (101 MHz, CDCl₃) δ [ppm] = 146.0,
- 162138.9, 135.3, 131.3, 124.3, 123.9, 115.7, 113.0, 39.6, 31.3, 26.6, 26.5, 25.7, 17.6, 16.0
- 163 (Figure S13b). HRMS (ESI) calculated for $C_{15}H_{24}$ [M]⁺: m/z 204.1873; m/z found:
- 164 204.1869. These data were the same as previously reported.⁸
- 165 Compound 7 was identified as (+)- α -bisabolol. Colorless oil. $[\alpha]_D^{22} = 51.3$ (*c* 0.06, 166 CHCl₃). ¹³C NMR (101 MHz, CDCl₃) δ [ppm] = 134.1, 131.7, 124.4, 120.4, 74.2, 42.8, 167 40.0, 30.9, 26.8, 25.6, 23.3, 23.2, 23.1, 21.9, 17.6 (Figure S14). HRMS (ESI) calculated 168 for C₁₅H₂₅O [M]⁺: m/z 221.1900; m/z found: 221.1898. These data were the same as 169 those previously reported findings.⁹
- Compound 8 was identified as (-)-acoradiene.¹⁰ Colorless oil. $[\alpha]_{D}^{22} = -24.2$ (c 0.06, 170 CHCl₃). The molecular formula was determined as $C_{15}H_{26}O$ by HR-ESI-MS at m/z171 204.1873 [M]⁺ (calcd 204.1873). Our ¹H-NMR data revealed the existence of one singlet 172 173 methyl (Me-12), three doublet methyls (Me-13, Me-14 and Me-15), and two olefinic methines (H-2, H-9) (Table S7 and Figure S15b). The ¹³C-NMR and HSQC spectra 174 confirmed the presence of fifteen carbon atoms, which were assigned as one sp^3 175 quaternary carbon (C-6), two sp^2 quaternary carbons (C-3, C-10), two olefinic methines, 176 two aliphatic methines, four aliphatic methylenes, and four methyls. These data 177 designated the bicyclic skeleton for compound 8. Our ¹H-¹H COSY experiments then 178 revealed spin systems of H-1/H-2, H-4/H-5, H-13/H-7/H-8/H-9, and H-14/H-11/H-15 179 (Figure S15a and 15e). Additionally, HMBC from the methyl signals were observed as 180 follows: Me-12 to C-2, C-3, and C-4; Me-13 to C-6, C-7, and C-8; Me-14 to C-10, C-11, 181 182 and C-15; and M-15 to C-10, C-11, and C-14. Furthermore, the HMBC spectra showed

correlations between H-5 and C-1, C-6 and C-7, between H-9 and C-6 and C-7, and
between H-11 and C-9 (Figure S15a and 15f). Thus, the planar structure of compound 8
was identified as a 5/6-membered spirocyclic sesquiterpene.

186 Calculation of optical rotation

187 All quantum-chemical calculations were performed using the Gaussian 03 program.
188 The optical rotation calculations were calculated using the b3lyp/aug-cc-pvdz method
189 under the Self-Consistent Reaction Field model of solvent (CHCl₃).

190 Energy minimization and optical rotation calculations

The initial conformational distribution search was performed using the MMFF94 191 192 method overlaid with key correlations observed in the NOESY spectra of 1. The corresponding minimum geometries were preoptimized at the HF/6-31G level in 193 Gaussian 03 program package,¹¹ which was further checked by frequency calculations; 194 no imaginary frequencies were found. Their minimum geometries were further optimized 195 196 by DFT calculation B3LYP at the b3lyp/aug-cc-pvdz level in the gas phase. ECD calculations were performed on the obtained stable conformers by TDDFT 197 [b3lyp/aug-cc-pvdz] under the Self-Consistent Reaction Field model of solvent (CHCl₃). 198 The overall predicted specific rotation value of **1** was subsequently compared with that of 199 200 the experimental one.

201 The cDNA sequence of FgFS:

202 ATGCCTCACAAGCACGTTCCTCTTAGACCAGTCAAGTTGACATTTGATCCTGTAGGATCA
 203 AACACCCTAGGTGTGCCAACCTTGGACTTTGAGTCTCTGTTCCGGGAAGACAGCGTCTCT
 204 GAGGATGCCCCTCTTGTTATCTACCCAGAGGATATGGGTGTCCCATGGAACACCTCTCTT
 205 CCTTGGACCAGACAATCCAAGTTCTGGGCTTACGCCGAGGCAGCTGGATATGAAATGGCC
 206 AACGGAATCAGCCTTGACAAGGCATCAGAGCGTGGCACACTACCCATGGAGTTGATGGA
 207 TGAGCGTCGCAAGTGGAAGATTGATGAGCTAGTTGAGGATGCCATCTCTTGCTGTGCTTA
 208 TCTTTACCCTACATCATCTCCTACCAGATTGGCGTTGTTGACCCAGTCTGTTCTGCTTCTAT

209 TCCTCCACGACGATGTTATTGAGCGAGGAGCTACTCAAAACGAAACCACAGTGGTAGAC GAATTTCTTAGCATGGCTCCCAAGAACAGGCATCTTAAGAAATTCTGGTCAGACGTATTG 210 211 GAATGTGATCCCGTCCTTGGACCTGATCTGCTTTATGCTATCCATGCTTTCGTCCGTGATG 212 GTCGTGTAAAGTCACCCTTTAAGCAGGATCACTATGCCACATTGGCTGATTACATGCTTT ACCGTCGCAATGATGTTGGCAAGACATTTATGATTGCAGCTATCCGCTTCGGCTCTGGCG 213 TGCAACAAACACGCGAAGAACTTGCTCCCTTTGACGAGCTTGCTGATCTTTACGTCAGAC 214 215 ACTCAATTCTTATCAACGATCTCTACTCGTATGATAAGGAGGTGCACGAGGTCAAGACTA 216 TCGACGCGTCCATCGTGAACGCAGTTGCTGTCACAGAGCAGCTCCTTTCCGTGTCGCCTG 217 ACCTGGCCAAGAACTTAACCAGAGCTATTACCTTTGACATGGAGAAGGAGTTTTACGGCA TTTGTGAGAAGTTTATGCACAGCCCTGATATCAACGATCGCCAGCGCGTGTTCGTTACTG 218 CGCTCTTTGATGCGTTGACAGGCAATATCTTCCATTCTGCTACTTTGAGCAGATACGTTCG 219 TCACGGCGAGAGACCACTTCCTTGCAAGTGTTAG 220

221

223 **References:**

- (1) Bian, G.; Han, Y.; Hou, A.; Yuan, Y.; Liu, X.; Deng, Z.; Liu, T. *Metab. Eng.* 2017, 42,
 1-8.
- 226 (2) Kumar, S.; Stecher, G.; Tamura, K. Mol. Biol. Evol. 2016, 33 (7), 1870-1874.
- 227 (3) Shevchuk, N. A.; Bryksin, A. V.; Nusinovich, Y. A.; Cabello, F. C.; Sutherland, M.;
- 228 Ladisch, S. Nucleic Acids Res. 2004, 32 (2), e19.
- (4) Gibson, D. G.; Young, L.; Chuang, R. Y.; Venter, J. C.; Hutchison, C. A.; Smith, H. O.
- 230 *Nat. Methods* **2009**, *6* (5), 343-345.
- 231 (5) Agger, S. A.; Lopez-Gallego, F.; Hoye, T. R.; Schmidt-Dannert, C. J. Bacteriol. 2008,
- 232 *190* (18), 6084-6096.
- 233 (6) Doskotch, R.; Cheng, H.-Y.; Odell, T.; Girard, L. J. Chem. Ecol. 1980, 6 (4),
 234 845-851.
- 235 (7) Brock, N. L.; Huss, K.; Tudzynski, B.; Dickschat, J. S. *Chembiochem.* 2013, *14* (3),
 236 311-5.
- 237 (8) Simionatto, E.; Porto, C.; Stüker, C. Z.; Dalcol, I. I.; Silva, U. F. d. *Quim. Nova* 2007,
 238 *30* (8), 1923-1925.
- 239 (9) (a) Miyazawa, M.; Nankai, H.; Kameoka, H. Phytochemistry 1995, 39 (5),
- 240 1077-1080; (b) Günther, K.; Carle, R.; Fleischhauer, I.; Merget, S. *Fresenius J. Anal.*241 *Chem.* 1993, 345 (12), 787-790.
- 242 (10) Marx, J. N.; Norman, L. R. J. Org. Chem. 1975, 40 (11), 1602-1606.
- 243 (11) Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.;
- Montgomery Jr, J.; Vreven, T.; Kudin, K.; Burant, J., gaussian 03, Gaussian. *Inc.: Wallingford, CT* 2004.

Figure S1. The skeleton produced by 1,6-cyclization of FPP upon isomerization tonerolidyl pyrophosphate (NPP).

Clade II

Figure S2. Phylogenetic tree of class I terpene synthases in genus *Fusarium*.

Branches marked in red represent the terpene synthases from genus *Fusarium*. Branches for identified terpene synthases of filamentous fungi are marked in black. Branch length indicates the number of substitutions per site. Branches are labeled with the percentage base on 1, 000 bootstrap replicates.

Figure S3. Phylogenetic tree of class I terpene synthases in *F. graminearum* J1-012.
Nine terpene synthases of *F. graminearum* J1-012 are designated as FgJ0xxxx and
marked in red. Branches of identified terpene synthases of filamentous fungi are marked
in black. Branch length indicates the number of substitutions per site. Branches are
labeled with the percentage based on 1,000 bootstrap replicates.

FgJ03939 CO27-CPS EC38-CPS CI4A-CPS AtARS PrARS EC38-PGS Hyp3 FfAAS	MPHKHVPLRPVKLTFDPVGSNTLGVPTLD FESLFREDSVSEDAPLVIYPEDMGVPWNTSLPW-TRQSKFWAYAEAAGYE MAPMAEECVSASP NQGHAKPVATPMRRAVHIPSE WTAQIHP MAPMVEZVVPTSP TQDYAKPVATPMRRAVHIPSE WTAQIHP MAPMVEZVVPTSP TQDYAKPVATPMRRAVHIPSE WTAQIHP MSLAP SSG DYPSH WTVEVDGVY MKKTUR SSG DYPSH WTVEVDGVY MKKTUR SSG DYPSH WTVEVDGVY MMKTTLRLAR SSG DYPSH WTVEVDGVY MMKTTLRLAQUARA SSG DYPSH WTVEVDGVY MATSTETISSLAQPFVHENPI SSG LEPPPTT FORCH MMKTTLRLAQUARA SSG NSVLCHR WKE WODVGVY MMKTTLRLAQUARA SSG LEPPPTT FORCH WKE WODVGVY MMKTLRLAQUARA SSG NSVLCHR NVKE WODVGVY SSG MMKTTLRLAQUARA SSG LEPPPTT FORCH WKE WODVGVY SSG MMKTTLRLAQUARA SSG NSVLCHR NVKE WKE SAGUARA SSG MMKTTLRLAQUARA SSG SSS LEPPPTT FORCH WKE </th <th></th>	
FgJ03939 CO27-CPS EC38-CPS CI4A-CPS AtARS PrARS EC38-PGS Hyp3 FfAAS	DDXD/E DDXD/E I GATQNETTVVDEFLSM 16 I GHWPFPS KITRKK VAAGFS	16 16 16 16 16 16 16 16 16 16 16 16 16 1
FgJ03939 CO27-CPS EC38-CPS CI4A-CPS AtARS PrARS EC38-PGS Hyp3 FfAAS	A P K N R H	3 3 2 8 3 3 3 1
FgJ03939 CO27-CPS EC38-CPS CI4A-CPS AtARS PrARS EC38-PGS Hyp3 FfAAS	NSEDTE VGKTFMIAAIRFGSGVQQTR EELAPFDELADLYVRHSIL NDLYSYDKE VHEVKTID ASIVNAVAVTEQLLSVSPDLAKNLTRAI 31 VGKALLAALMRFSMALIVSP SDLEMVRPVDRNGSKHLSV ND IWSYEKE VLAAQTLHEEGGMLGTAVAVLSKEAEISTDASKRVLYHL 28 VGKALLAALMRFSMALTVSP - SDLEMVRPVDRNGSKHLSV ND IWSYEKE VLAAQTLHEEGGMLGTAVAVLSKEAEISTDASKRVLYHL 28 VGKALLAALMRFSMGLVYP - EDLAIVRPIDFNGSRHLSV ND IWSYEKE VLAAQTLHEEGGMLGTAVAVLSKEAEISTDASKRVLYHL 28 VGKALLGALMRFSMGLVYP - EDLAIVRPIDFNGSRHLSV ND IWSFEKELLASKNAHEGGVLGSAVSVLADQVGISIDGSKRILYVL 26 VGKALLAALMRFSMGLKLSP - SELQRVREIDANGSKHLSV ND IWSFEKELLASKNAHEGGVLGSAVSVLADQVGISIDGSKRILYVL 26 VGKALLSALMRFSMGLKLSP - SELQRVREIDANGSKHLSV ND IYSYEKELYTSKTAHSEGGILGTSVQILAQEADVTAEAAKRVLFVM 26 VGKALLSALMRFSMGLRISP - SELQRVREIDANGSKHLSV ND IYSYDKE EEASTGHKGVKVIAEESKLGIPATKRVLWSM 29 VGCAPQIAITDAMLKIRLPESIMESAAMKALWRETVVICFILNDVYSVQKEIAQGSLLN - LVPVMYKNCDPERQSLDTVTRDIEVLLQKS 34 FAVDFCDAAILLTCEIFLTP - ADMEPLRKLHRLYMTHFSL NDLYSPKEVAGETG - SAVINAVRVLEQUVDTSTRSKVLLARF 31 IAKPFMIAAIRFGSGVRQTP - EETAPFAELEDLYVQHSILMNDLYSPKEWYEARTIN GSVVNAVHVIEKLMCVPPHLAKTITRTM 31	11 10 16 11 2 6
FgJ03939 CO27-CPS EC38-CPS CI4A-CPS AtARS PrARS EC38-PGS Hyp3 FfAAS	TFDMEKEFYGICEKFMHSP-DINDRQRVFVTALFDALTGNIFHSATLSRV RYV CREWEDEHRILVADILAQN - DTFVLRAYLOGLEFOMSGNELWSRTTLRVQOPRP	

Figure S4. Sequence alignment of FgFS and the clade IV of fungi class I terpene synthase. The red boxes represent the conserved "DDXXD/E", "NSE/DTE", "R", and "RY" motifs.

269

265

Figure S5. SDS-PAGE analysis of recombinant sesquiterpene cyclase FgJ03939.

Figure S6. *In vitro* assay of purified FgFS by using GPP (i), FPP (ii), and GGPP (iii) as

substrate, respectively.

Figure S8a. ¹H NMR spectrum of compound **1** (CDCl₃, 400 MHz).

Figure S8b. ¹³C NMR spectrum of compound **1** (CDCl₃, 101 MHz).

Figure S9d. HSQC spectrum of compound **2** in CDCl₃.

2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 f2 (ppm)

Figure S9g. HMBC spectrum of compound **2** in CDCl₃.

Figure S9h. NOESY spectrum of compound **2** in CDCl₃.

Figure S10f. NOESY spectrum of compound **3** in CDCl₃.

Figure S11b. ¹³C NMR spectrum of compound **4** in CDCl₃.

Figure S12b. ¹³C NMR spectrum of compound 5 in CDCl₃.

Figure S13a. ¹H NMR spectrum of compound **6** in CDCl₃.

338

Figure S13b. ¹³C NMR spectrum of compound **6** in CDCl₃.

.

348

Figure S15a. The planar structure, ¹H-¹H COSY and the key HMBC correlations of

350 compound **8**.

Figure S15b. ¹H NMR spectrum of compound **8** (CDCl₃, 400 MHz).

Figure S15d. HSQC spectrum of compound **8** in CDCl₃.

Figure S15e. 1 H- 1 H COSY spectrum of compound **8** in CDCl₃.

Figure S15f. HMBC spectrum of compound **8** in CDCl₃.

Figure S16. Compound **1** obtained from $[1^{-13}C, {}^{2}H_{3}]$ sodium acetate feeding experiment.

- **Figure S18.** Compound **8** obtained from $[1-^{13}C, ^{2}H_{3}]$ sodium acetate feeding experiment.

Table S1. Oligonucleotides for the construction of plasmids used in this research.

No.	Primer name	Sequence 5'-3'
P1	1411 F	GCAATTAACCCTCACTAAAGGGAACAAAAGCGCGGCCGCttcaccgattctgagcgaat
P2	1411 R	GGCATCCGCTTACAGACAAGCTGTGAAAAGAAAGTGGAATATTCATTC
Р3	1417 F	AAAGAAGTGTCAAATCAAGTGTCAAATGTATACTTCTTTTTTTT
P4	1417 R	AGCTCCCGGAGACGGTCACAGCTTGTCTGTGCGGCCGCttaatgatacgggagttgccg
P5	1416 F	acctctatactttaacgtcaaggagaaaaaactataGCGCAATGATTGAATAGTCAAAG
P6	1416 R	GTTGTTCTGAACAAAGTAAAAAAAAAGAAGTATACATTTGACACTTGATTTGACACTTCT
P7	1412 F	GAAAAAATATGATATGAATGAATATTCCACTTTCTTTTCACAGCTTGTCTGTAAGCGG
P8	1412 R	GTGTTGATAAAAAATGTTTATCCATTGGACCGTGTAGTACCCAATTCGCCCTATAGTGA
P9	1413 F	GCGCGTAATACGACTCACTATAGGGCGAATTGGGTACTACACGGTCCAATGGATAAACA
P10	1413 R	ATCGTTTGAAAGATGGGTCCGTCACCTGCATTAAATCCTAATCTCTGCTTTTGTGCGCG
P11	1414 F	GTACATACATAAACATACGCGCACAAAAGCAGAGATTAGGATTTAATGCAGGTGACGGA
P12	1414 R	aaaaaagtaagaatttttgaaaattcaatataaATGGTTTTAACCAATAAAACAGTCAT
P13	1415 F	AAATGACTGTTTTATTGGTTAAAACCATttatattgaattttcaaaaattcttactttt
P14	1415 R	AAAAAAATCTTTGACTATTCAATCATTGCGCtatagttttttctccttgacgttaaagt
P15	1418 F	gettatattgcggcaactcccgtatcattaaGCGGCCGCACAGACAAGCTGTGACCGTC
P16	1418 R	acctgtgattcgctcagaatcggtgaaGCGGCCGCGCTTTTGTTCCCTTTAGTGAGGGT
P17	FgJ03939 F (NdeI)	ATATCATATGCCTCACAAGCACGTTCCTC
P18	FgJ03939 R (EcoRI)	ATATGGTGACCGAATTCCTAACACTTGCAAGGAAGTGGTC
P19	3939-Tadh1 GF	CATAAATCATAAGAAATTCGCCTAACACTTGCAAGGAAGTGG
P20	3939-Pgal1-10 R	GAAAATTCAATATAAGCCACCATGCCTCACAAGCACGTTC
P21	Pgal1-10-3939 F	GTGAGGCATGGTGGCTTATATTGAATTTTCAAAAATTC
P22	Pgal1-10-ERG20 R	CTGAAGCCATGGTGGCTATAGTTTTTTCTCCTTGACG
P23	ERG20-Pgal1-10 F	GAGAAAAAACTATAGCCACCATGGCTTCAGAAAAAGAAATTAG
P24	ERG20-Tcyc GR	GTGACATAACTAATTACATGACTATTTGCTTCTCTTGTAAAC
P25	Tcyc-ERG20 GF	GTTTACAAGAGAAGCAAATAGTCATGTAATTAGTTATGTCAC
P26	Tadh1-3939 GR	CCACTTCCTTGCAAGTGTTAGGCGAATTTCTTATGATTTATG

Strains	Relevant genotype	Reference
BL21 (DE3)	E. coli B F ⁻ dcm ompT hsdSB(rB ⁻ mB ⁻)gal	Invitrogen
CEN.PK2-1D	Saccharomyces cerevisiae MATalpha; his3D1; leu2-3_112; ura3-52; trp1-289;	EUROSCARF
	MAL2-8c; SUC2	
J1-012	Fusarium graminearum	This work
YZL141	S. cerevisiae:: pGAL10-tHMG1	This work
T16	S. cerevisiae:: P _{GAL10} -tHMG1; P _{GAL10} -FgJ03939; P _{GAL1} -ERG20	This work
Plasmids	Description	Reference
pZY141	pRS426 derived, TRP1, P _{GAL10} -tHMG1-T _{ACT1}	This work
pGB152	pET28a derived, P _{T7} : N-terminal his ₆ -tag FgJ03939	This work
pGB315	p426gal derived, URA, T _{CYC1} -ERG20-P _{GAL1} -P _{GAL10} -FgJ03939-T _{ADH1}	This work

Table S2. Strains and plasmids used in this research.

Table S3. Kinetic constants of FgJ03939 with GPP, FPP and GGPP.						
	FgJ03939					
ate	$k_{ m m}$ [μ M]	$k_{\rm cat} [{\rm s}^{-1}]$	$k_{\rm cat}/k_{\rm m} [{ m M}^{-1} { m s}^{-1}]$			
)	9.9±1.23	(17±0. 4)×10 ⁻³	1.7×10^{3}			
)	16.396±3.277	(94.5±9.1)×10 ⁻³	5.8×10^3			
P	5.9257±1.559	(16±1)×10 ⁻³	2.7×10^3			
	Table : rate -	rate $k_{\rm m} [\mu M]$ p 9.9±1.23 p 16.396±3.277	FgJ03939 rate FgJ03939 $k_m \ [\mu M]$ $k_{cat} \ [s^{-1}]$ P 9.9±1.23 $(17 \pm 0.4) \times 10^{-3}$ P 16.396±3.277 $(94.5 \pm 9.1) \times 10^{-3}$			

Table S3 Kinetic constants of Eq. 103030 with GPP EPP and GGPP

¹³ C				$^{1}\mathrm{H}$			
Position	δ(ppm)	δ(ppm)	Intensity	Multiplicity	HMBC correlation	COSY correlation	
1	25.11	2.72	1H	dd (<i>J</i> = 16.7, 7.4 Hz)	2, 3, 6, 7, 10	H-1b, H-2	
		2.48	1H	d (<i>J</i> = 16.9 Hz)		H-1a	
2	121.98	5.30	1H	m	1, 4,12	H-1a	
3	138.39						
4	29.06	2.01	1H	m	2, 3, 5, 10, 12		
		1.85	1H	m		H-5b	
5	38.29	1.59	1H	m			
		1.52	1H	m	3, 6, 10	H-4b	
6	137.93						
7	130.74						
8	36.96	2.15	2H	m		H-9b	
9	28.13	1.81	1H	m		H-9b	
		1.32	1H	m	8, 10, 11	H-8, H-9a	
10	57.72						
11	33.34	1.81	1H	m		H-14, H-15	
12	26.88	1.63	3H	S	2, 3, 4		
13	13.71	1.58	3H	S	6, 7, 8		
14	17.96	0.68	3H	d (<i>J</i> = 6.8 Hz)	10, 11, 15	H-11	
15	17.21	0.86	3H	d (<i>J</i> = 6.8 Hz)	10, 11, 14	H-11	

Table S4. ¹H and ¹³C NMR data of compound **1** (CDCl₃, 400 MHz and 101 MHz).

	¹³ C			$^{1}\mathrm{H}$			
Position	δ(ppm)	δ(ppm)	Intensity	Multiplicity	HMBC correlation	COSY correlation	
1	8.72	0.39	2H	m	2, 3, 6, 7, 10	H-2	
2	24.88	0.95	1H	m		H-1	
3	70.39						
4	31.58	1.25	1H	d (<i>J</i> = 13.2 Hz)	2, 3, 10, 12	H-4b, H-5β	
		1.08	1H	m		H-4a, H-5α	
5	32.93	1.66(β)	1H	m		Η-5α	
		0.94(α)	1H	m		H-4b, H-5β	
6	37.67						
7	40.42	1.79	1H	m	2, 6, 8, 13	H-8b, H-13	
8	33.46	1.71	1H	m	7, 9, 10		
		1.09	1H	m		H-7	
9	31.93	1.64	1H	m		H-9b	
		1.07	1H	m		H-9a	
10	43.56						
11	30.21	1.62	1H	m	9, 14, 15	H-14, H-15	
12	29.17	1.36	3H	S	4, 3, 4		
13	14.3	0.59	3H	d (<i>J</i> = 6.5 Hz)	6, 7, 8	H-7	
14	18.02	0.90	3H	d ($J = 6.7$ Hz)	10, 11, 15	H-11	
15	17.42	0.77	3H	d ($J = 6.7$ Hz)	10, 11, 14	H-11	

Table S5. ¹H and ¹³C NMR data of compound **2** (CDCl₃, 400 MHz and 101 MHz).

	¹³ C			$^{1}\mathrm{H}$		
Position	δ(ppm)	δ(ppm)	Intensity	Multiplicity	HMBC correlation	COSY correlation
1	9.60	0.44	1H	dd (<i>J</i> = 9.9, 5.5	2, 3, 6, 7, 10	H-1b, H-2
				Hz)		
		0.06	1H	d (<i>J</i> = 5.7 Hz)	2, 3, 6, 7, 10	H-1a, H-2
2	24.33	0.85	1H	m		H-1
3	69.26					
4	30.39	1.17	1H	m		H-4b, H-5a
		1.07	1H	m	5, 10	H-4a
5	29.02	1.51	1H	m	3, 4, 6	H-4a
		1.18	1H	m		
б	34.41					
7	40.36	1.81	1H	m	2, 8	H-13
8	33.54	1.73	1H	m	7, 9, 10	H-8b
		1.15	1H	m		H-8a
9	32.17	1.66	1H	m	5, 8, 10, 11	H-9a
		1.13	1H	m		H-9b
10	43.33					
11	30.2	1.52	1H	m	5, 9, 10, 14, 15	H-14, H-15
12	29.6	1.24	3H	S	2, 3, 4	
13	14.29	0.60	3H	d (<i>J</i> = 6.4 Hz)	6, 7, 8	H-7
14	17.71	0.88	3H	d ($J = 6.7$ Hz))	10, 11, 15	H-11
15	17.36	0.77	3H	d (<i>J</i> = 6.6 Hz)	10, 11, 14	H-11

Table S6. ¹H and ¹³C NMR data of compound **3** (CDCl₃, 400 MHz and 101 MHz).

	¹³ C			$^{1}\mathrm{H}$			
Position	δ(ppm)	δ(ppm)	Intensity	Intensity Multiplicity		COSY correlation	
1	33.18	1.86	1H	m	2, 3	H-2	
		1.74	1H	m		H-2	
2	120.6	5.34	1H	m		H-1a, H-1b	
3	133.77						
4	28.07	2.01	1H	m		H-4b, H-5	
		1.93	1H	m		H-4a, H-5	
5	25.92	1.62	2H	m	1, 3, 4, 6, 7	H-4	
6	49.75						
7	39.85	2.0	1H	m		H-8a, H-13	
8	37.67	2.41	1H	ddt (<i>J</i> = 15.8, 6.7, 1.7 Hz)	9, 10, 13	H-7, H-8b, H-9	
		1.71	1H	dt (<i>J</i> = 15.8, 2.8 Hz)	6, 7, 9, 10, 13	H-8a, H-9	
9	119.49	5.32	1H	m	6, 7, 8	H-8a, H-8b	
10	157.29						
11	26.18	2.17	1H	m	9, 10, 14, 15	H-14, H-15	
12	23.52	1.66	3Н	brs	2, 3, 4		
13	16.19	0.87	3H	d ($J = 6.9$ Hz)	6, 7, 8	H-13	
14	24.19	1.02	3H	d (<i>J</i> = 7.2 Hz)	10, 11, 15	H-11	
15	24.34	1.04	3H	d (<i>J</i> = 7.2 Hz)	10, 11, 14	H-11	

Table S7. ¹H and ¹³C NMR data of compound 8 (CDCl₃, 400 MHz and 101 MHz).

Position	δ(ppm)	Enrichment		Isotope shift (ppn	n)
1	25.11	*		-0.11	
2	121.98				
3	138.39	*		-0.09	
4	29.06				
5	38.29	*		None	
6	137.93				
7	130.74	*		-0.08	
8	36.96				
9	28.13	*		None	
10	57.72				
11	33.34	*	-0.07	-0.15	-0.25
12	26.88				
13	13.71				
14	17.21				
15	17.96				

 Table S8. ¹³C NMR data of ¹³C-labeled compound 1 (CDCl₃, 101 MHz).

Position	δ(ppm)	Enrichment	Isotope shift (ppm	ı)
1	33.18	*	-0.13	
2	120.6			
3	133.77	*	-0.08	
4	28.07			
5	25.92	*	None	
6	49.75			
7	39.85	*	-0.18	-0.27
8	37.67			
9	119.49	*	None	
10	157.29			
11	26.18	*	-0.14	-0.22
12	23.52			
13	16.19			
14	24.19			
15	24.34			

 Table S9. ¹³C NMR data of ¹³C-labeled compound 8 (CDCl₃, 101 MHz).

393 Coordinates and detailed data for quantum chemical calculations of compound 1.

- Energy minimization of two conformations of **1** (**1a** and **1b**)

E(B3LYP-Aug-CC-pVDZ) = -586.08767

400 Standard orientation:

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.715410	-0. 456567	-0. 35059
2	6	0	0.302078	0.844305	0.34341
3	6	0	-2.171125	0.706989	0.88928
4	6	0	0.716214	3.368861	0.18690
5	6	0	1.686957	-2.832758	0.00051
6	6	0	2.291002	-1.007483	1.62882
7	6	0	-4.071908	-0.278131	-0.36596
8	6	0	1.207855	-1.535472	0.67319
9	6	0	-0.474079	-0.985389	-1.20248
10	6	0	-2.627236	-0.253609	0.0701
11	6	0	-0.753661	0.848448	1.42086
12	6	0	0.903592	1.926844	-0.18122
13	6	0	1.859811	0.013354	-1.3080
14	6	0	1.824941	1.559178	-1.32180
15	6	0	-1.766892	-1.388854	-0.4644
16	1	0	-2.879276	1.470108	1.22172
17	1	0	0.034077	3.507567	1.0338
18	1	0	1.680384	3.835783	0.4445
19	1	0	0.311611	3.939279	-0.6650
20	1	0	0.891181	-3.329058	-0.5685
21	1	0	2.525850	-2.645319	-0.6848

426	22	1	0	2.037423	-3.545872	0.759953
427	23	1	0	2.519701	-1.763591	2.392705
428	24	1	0	3.229335	-0.783357	1.102308
429	25	1	0	1.972917	-0.092274	2.142799
430	26	1	0	-4.554257	-1.224173	-0.069900
431	27	1	0	-4.644912	0.551000	0.068087
432	28	1	0	-4.151793	-0.218307	-1.463753
433	29	1	0	0.345079	-1.802060	1.300762
434	30	1	0	-0.128145	-1.852991	-1.781710
435	31	1	0	-0.725047	-0.207936	-1.939460
436	32	1	0	-0.688941	1.781205	1.994068
437	33	1	0	-0.552727	0.041953	2.145543
438	34	1	0	1.735464	-0.410815	-2.312619
439	35	1	0	2.833623	-0.332271	-0.943802
440	36	1	0	2.826575	2.001872	-1.200740
441	37	1	0	1.432128	1.959150	-2.272494
442	38	1	0	-1.532563	-2.086531	0.355825
443	39	1	0	-2.375427	-1.971653	-1.170864
444						

446 E(B3LYP-Aug-CC-pVDZ) = -586.08988

450 Standard orientation:

451 452	 Center Atomic Atomic			Coordinates (Angstroms)				
453	Number	Number	Туре	Х	Y	Z		
454								
455	1	6	0	-0.734267	-0.507604	0.237073		
456	2	6	0	-0.114903	0.743956	-0.384314		
457	3	6	0	2.249775	0.203403	-1.151359		
458	4	6	0	-0.114527	3.290063	-0.084815		

460 6 6 0 -2.935363 -0 461 7 6 0 4.108884 -0 462 8 6 0 -1.798685 -1	2. 459546-0. 1929110. 182484-1. 1075670. 7383840. 189821
461 7 6 0 4.108884 -0 462 8 6 0 -1.798685 -1	0. 738384 0. 189821
462 8 6 0 -1.798685 -	
AC2 0 6 0 0.266640	1. 143811 -0. 725629
463 9 6 0 0. 366649 -	1. 560768 0. 538059
464 10 6 0 2.643802 -	0. 463408 -0. 054363
465 11 6 0 0.844455 0	0. 626998 -1. 538243
466 12 6 0 -0. 496058	1. 875566 0. 234921
467 13 6 0 -1.367894 0	0.055100 1.548538
468 14 6 0 -1. 443964	1. 5889831. 379422
469 15 6 0 1.713512 -	0.996950 1.024949
470 16 1 0 3. 024436 0	0. 504384 -1. 862669
471 17 1 0 0. 552508	3. 365367 -0. 951306
472 18 1 0 -1.009410	3. 900518 -0. 287547
473 19 1 0 0. 394309	3. 759131 0. 772654
474 20 1 0 -1.629934 -3	3. 231487 -0. 033764
475 21 1 0 -2. 923883 -2	2. 306536 0. 757420
476 22 1 0 -3. 119977 -2	2. 862001 -0. 911561
477 23 1 0 -3. 580727 -0	0. 644609 -1. 867338
478 24 1 0 -3. 571707 0	0. 053213 -0. 242720
479 25 1 0 -2. 554042 0	0. 760324 -1. 517971
480 26 1 0 4. 303137 -	1.8221110.238427
481 27 1 0 4.743802 -	0. 307383 -0. 594556
482 28 1 0 4.428440 -	0. 320512 1. 158649
483 29 1 0 -1.257332 -	1. 390848 -1. 653666
484 30 1 0 0. 555047 -2	2. 163439 -0. 363273
485 31 1 0 -0.014661 -2	2. 257211 1. 297937
486 32 1 0 0. 917752	1. 591370 -2. 060176
487 33 1 0 0.445845 -	0. 074972 -2. 291995
488 34 1 0 -0.718668 -0	0. 187764 2. 400225
489 35 1 0 -2. 344329 -0	0. 394793 1. 764855
490 36 1 0 -2. 462702	1. 9351701. 135559
491 37 1 0 -1.151467	2. 126559 2. 295183
492 38 1 0 2.247278 -	1.8035431.549712
493 39 1 0 1.550215 -	0. 215508 1. 786445
494	