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Abstract

We review various extensions of LSW theory to finite volume fraction. The respec-

tive equations for the averaged volumetric growth rate and its dependence on volume

fraction are discussed first, followed by a detailed derivation of the equations for the

stationary particle-size distribution (PSD) and coarsening rate.

1 Extending LSW theory to finite volume fraction

1.1 Averaged volumetric growth rate

A common method to relax the LSW assumption of zero dispersed-phase volume fraction is

to consider the growth of a particle in the centre of a spherical cell of finite size instead of an

infinite medium. Denoting the radius of the cell as ac, the (Laplacian) composition gradient
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at the surface of a particle is now obtained as

∂xαi (r)

∂r

∣∣∣∣
r=a

=
xαi (ac)− xαi (a)
a(1− a/ac)

(1)

As for the LSW theory, the particles are assumed to interact with the averaged composition

of the matrix phase, but now at a distance ac instead of infinity. The corresponding averaged

volumetric growth rate of particles of size a can be written as a simple modification of the

LSW result, according to

B(z) =
BLSW(z)

1− z/zc
(2)

Various empirical methods have been proposed for relating the rescaled cell size zc to the

volume fraction of the dispersed phase. Some possibilities are the introduction of some geo-

metrical quantity such as the average distance to nearest neighbours,1,2 or the introduction

of some constraints satisfying the macroscopic specification of the system under considera-

tion.3–6 Of these models, the macroscopic model of Marsh and Glicksman5 seems to lead to

the most accurate comparison to experiments. The most prominent assumption underlying

this model is the Ansatz that the rescaled cell size scales with the rescaled particle size,

according to

z3c = Pz3 + E (3)

The constants P and E are obtained by ensuring two global constraints are met: The first

constraint ensures a constant dispersed-phase volume fraction (which has been proven to be

a valid approximation within the asymptotic limit of long coarsening times7), according to

φβV =
〈z3〉
〈z3c 〉

(4)
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whereas the second constraint ensures that the average composition of all cells equals the

composition at the surface of a particle of critical size a∗, as

〈
B(z)+6

3z
(z3c − z3)−

B(z)
2

(z2c − z2)
〉

〈z3c − z3〉
= 2 (5)

where the angular brackets 〈·〉 denote averages over the ensemble of particles.

A different approach to include the effect of finite dispersed-phase volume fraction on the

growth rate is to recast the system of growing and shrinking particles in terms of a system of

point sources and sinks of the precipitating species.8–13 In principle this allows for a rigorous

statistical-mechanical approach, involving a diagrammetic series expansion in φV . Due to

complexity of the method, however, the series has only been developed up to first order.

Assuming a random spatial arrangement of particles, Marqusee and Ross (MR) derived9

B(z) = [1 + z/zs]B
LSW(z) (6)

where

zs =

√
〈z3〉

3φV 〈z〉
(7)

is a dimensionless screening length. Related approaches not restricted by the absence of

spatial correlations between particles have been developed, but at a price of increased com-

plexity.8,10 Since the MR approach is only a first order theory, its application is expected to

be limited to low volume fractions.

A similar theory expected to be more useful for application to intermediate volume frac-

tions, is that of Brailsford and Wynblatt.14 Their model assumes the particles to grow or

shrink within a field of homogeneous source-sink strength. By introducing a spherical cav-

ity of radius ac containing a particle of radius a < ac in the system (with φV = a3/a3c and

∇2xα(r) = 0 for a < r < ac), and deriving the flux of material into the cavity, a self-consistent

theory for the size- and volume-fraction dependent growth rate could be developed. Using
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an (approximate) interpolation formula between the self-consistent results for φV = 0 and

φV = 1, the averaged growth rate could be approximated to the same form as Eq. (6), with

a screening length

zs =
2 〈z3〉

3φV 〈z2〉+
√

9 (φV 〈z2〉)2 + 12φV 〈z3〉 〈z〉
(8)

The growth rates of Eqs. (2)-(8) clearly show that, compared to LSW theory, all theo-

ries for finite dispersed-phase volume fraction suffer from the additional difficulty that the

averaged growth rate B(z) depends on certain statistical averages 〈·〉 over the ensemble of

particles. In other words, the averaged growth rate is a functional of the PSD, the correct

notation for which would be B[feq(z); z]. Due to the functional dependence, calculation

of growth rates cannot be uncoupled from the calculation of the stationary PSD, which

complicates the analysis. In the next section we derive the respective equations.

1.2 Stationary PSD and coarsening rate

For deriving the stationary PSD, it is instructive to switch to the particle volume V = a3

and rescaled particle volume v = V/V ∗(t) as variables. Rewriting the continuity equation in

terms of the rescaled particle volume v, one obtains

∂n(v, t)

∂t
+
∂n(v, t)v̇

∂v
= 0 (9)

with

v̇ =
B[feq(v); v]− vK∗

V ∗(t)
(10)

and

K∗ ≡ da∗3

dt
(11)

the coarsening rate of the critical particle size. Introducing the condition for self-similarity

n(v, t) = feq(v)n(t) (12)
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leads to reformulation of the continuity equation to the following partial differential equation

(B[feq(v); v]− vK∗)
1

feq(v)

dfeq(v)

dv
+

(
dB[feq(v); v]

dv
−K∗

)
+ V ∗(t)

1

n(t)

dn(t)

dt
= 0 (13)

The statistical-self-similarity hypothesis of Mullins15 shows that, if a stationary PSD exists,

the coarsening rate K∗ must be a constant. Under this condition, the first two terms of the

above equation depend only on v, whereas the third term depends only on t, leading to the

following two ordinary differential equations

(B[feq(v); v]− vK∗)
1

feq(v)

dfeq(v)

dv
+

(
dB[feq(v); v]

dv
−K∗

)
= λ (14)

−V ∗(t) 1

n(t)

dn(t)

dt
= λ (15)

where λ is a separation constant. The value of λ is obtained from the condition that, for

long coarsening times (asymptotic limit), the volume fraction of dispersed phase material

will tend to a constant (see the work of Marqusee and Ross7 for a justification of such an

approach). Using Eq. (12), one obtains

φV = V ∗(t)n(t)

∫ ∞
0

feq(v)vdv (16)

which leads to the insight that, in the asymptotic limit,

n(t)V ∗(t) = constant (17)

Using this in Eq. (15), one obtains

λ = K∗ (18)
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Substitution in Eq. (14), followed by a separation of variables, leads to the following general

solution for the stationary PSD

feq(v) =
C

B[feq(v); v]− vK∗
exp

[∫ v

0

K

B[feq(v′); v′]− v′K∗
dv′
]

(19)

The normalisation constant C is obtained by ensuring the PSD integrates to unity. Under

the condition that f(v) vanishes for rescaled volumes beyond a certain cut-off, one finds

C = −λ (20)

Rewriting in terms of the rescaled particle radius z = a/a∗(t), we obtain

feq(z) =
−3z2K∗

B[feq(z); z]− z3K∗
exp

[∫ z

0

3z2K∗

B[feq(z′); z′]− (z′)3K∗
dz′
]

(21)

which, due to the functional dependence of the growth rate on the PSD, is an implicit

equation. For the LSW theory, this equation is explicit.

The vanishing of the PSD for rescaled particle sizes above a certain maximum value

zm was first shown by LSW, who derived the following stability criterion based on a mass

balance constraint for the precipitating species

feq(z > zm) = 0 (22)

∂z

∂t

∣∣∣∣
zm

= 0 (23)

∂

∂z

∂z

∂t

∣∣∣∣
zm

= 0 (24)

The stability argument can be rewritten in terms of the volumetric growth rate B[feq(z); z],

leading to a set of equations that can be solved for the coarsening rate K∗ (which so far was
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undetermined), according to

zm =
3B[feq(zm); zm]

dB[feq(z); z]

dz

∣∣∣∣
zm

(25)

K∗ =
B[feq(zm); zm]

z3m
(26)

For the growth rate used in the LSW theory, Eqs. (25)-(26) are explicit, and can be solved

analytically, as

zLSWm =
3

2
(27)

K∗LSW =
8

9
ξ (28)

when substituted in Eq. (21), this leads to the famous LSW result

fLSW
eq (z) =

4

9
z2
(

3

3 + z

)7/3(
3/2

3/2− z

)11/3

exp

(
z

z − 3/2

) (29)

For any of the extensions of LSW theory to finite volume fraction, the coarsening rate and

PSD can only be calculated by solving the combined set of Eqs. (21) and (25)-(26), using

an iterative routine. The LSW distribution Eq. (29) can be used as an initial guess. For

the Marsh and Glicksman model there is an additional difficulty, as the iterative procedure

needs to be performed under the constraints of Eqs. (3)-(5), which require an additional,

nested, iterative procedure. In this case, the initial guess for the PSD is determined by the

initial guess for the model parameters P and E of Eq. (3).
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