Supporting Information For

Oedometric Small-Angle Neutron Scattering: *In Situ* Observation of Nano-Pore Structure During Bentonite Consolidation and Swelling in Dry and Hydrous CO₂ Environments

Thomas A. Dewers, Jason E. Heath, Charles R. Bryan, Joseph T. Mang, Rex P. Hjelm, Mei

Ding, Mark Taylor

Number of pages: 69

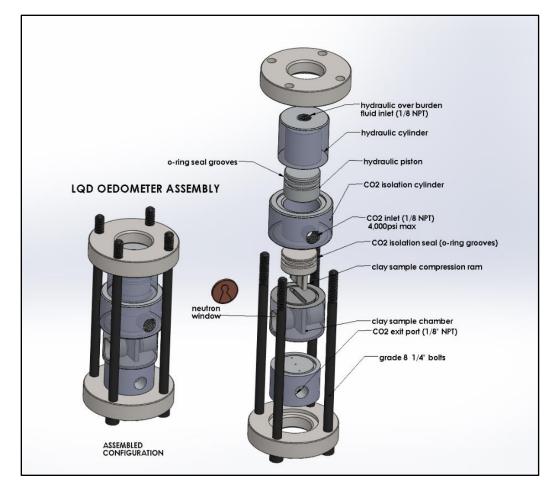
Number of figures: 30 main figures labeled S1-S30, with several other figures embedded in a finite element analysis report

Number of tables: no main tables, with several tables embedded in a finite element analysis report

This Supporting Information contains: information on the design, construction, and finite element testing of components of both the Titanium oedometric cell (TOC) and the Oedometric SANS Cell (OSC); design elements of the OSC to minimize multiple scattering; information on interpretation of SANS results including sensitivity to parameter choices; and results of TOUGH2 simulations used to calculate water saturation in liquid CO2 at experimental conditions.

Contents

S1. Design, Construction, and Testing of Oedometric Cells Used in the Study 3	
S1.1. Design and Materials of the Aluminum-window Oedometer	3
S1.2. Finite Element Analysis of the OSC	8
S1.3. Design, Materials, and Finite Element Modeling of the Titanium Oedometer	1
S2. Neutron Beam Transmission as a Function of Sample Thickness, and Assessment of Multiple Scattering 35	
S3. SANS Interpretation and Parameter Sensitivity.38	
S3.1. Stage I Dry Consolidation	8
S3.2. Stage II Dry Consolidation	9
S3.3. Stage III Hydrostatic Pressurization with Dry CO ₂ 4	6
S3.4. Stage IV Post-Dry CO ₂ Consolidation4	6
S3.5. Stage V Hydrostatic Pressurization with Wet CO_2 4	7
S3.6. Stage VI Post-Wet CO ₂ Consolidation4	7
S3.7. Sensitivity of Pore Size Distribution Interpretations to Scattering Contrast	0
S4. TOUGH2 Calculations of Water Saturation and Liquid CO_2 Density 62	
References	


S1. Design, Construction, and Testing of Oedometric Cells Used in the Study

S1.1. Design and Materials of the Aluminum-window Oedometer

The aluminum oedometer has a sample geometry such that it is optimized for the optics of small-angle neutron scattering methods (this includes aluminum windows or so-called "neutron windows" as shown in Figure 1). The oedometer was leak and overpressure tested at Sandia National Laboratories' (SNL's) Geomechanics Laboratory to determine the maximum allowable working pressure (MAWP) and the safety factor for this custom built oedometer. The oedometer contains a 0.050 to 0.100 in³ sample chamber, depending on position of the compression piston. The sample chamber is for placement of clay or other geological samples under uniaxial strain with pore fluids. The oedometer design facilitates measurement of "swelling" pressure or sample compaction. The oedometer is composed of steel and aluminum. The aluminum portion for the sample chamber has suitable low neutron attenuation to allow for measurement of a sample's neutron scattering properties to infer pore structure. Thus, in addition to swelling-pressure measurements, the oedometer is designed for use in neutron-beam studies. The sample thickness normal to the neutron beam is ~ 3.2 mm, which is large enough to permit measurements of consolidation but small enough to minimize effects of multiple neutron scattering. The piping system connected to the OSC is compatible with the piping system described in the main text that was developed for the TIOC described below, except that different pressure relief valves (PRFs) are needed that are set at a lower pressure. All o-rings are composed of ethylene propylene (EP) or ethylene propylene diene monomer (EPDM) and thus resistant to supercritical CO₂. Precision Plastic Mesh is used at the top and bottom of the clay sample to serve as a porous frit. The oedometer design includes a narrow slot for the sample, with a narrow piston. The pressure applied by the hydraulic piston will result in approximately

7.74 times higher stress on the sample due to the reduction of surface area of the ram piston that contacts the sample.

Figure S1 presents a schematic of the oedometer with annotation regarding fluid inlets and/or outlets, sample location, and dimensions. Results of a leak and overpressure test, safety-related information, and a finite element analysis on this custom-built vessel follow below.

Figure S1. Schematic diagram of OSC with annotation indicated by arrows. Note penny for scale.

The Al-window oedometer required testing to determine the MAWP for the unique geometry and to verify no leaks. This testing used overpressure testing to determine the MAWP, the value to set the PRVs, and the factor of safety. For overpressure testing, strain gauges were placed at

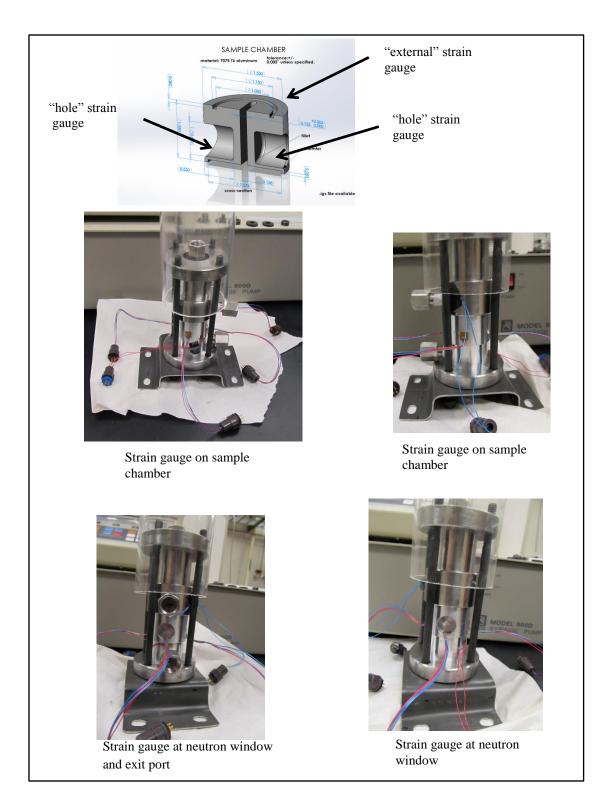


Figure S2. Strain gauge mounting locations used for overpressure testing of the OSC.

five locations: two on the clay sample chamber at the location where the internal chamber comes closest to the outside wall; two at the base of the neutron window; and one above the CO_2 exit port (see Figure S2 for mounting locations).

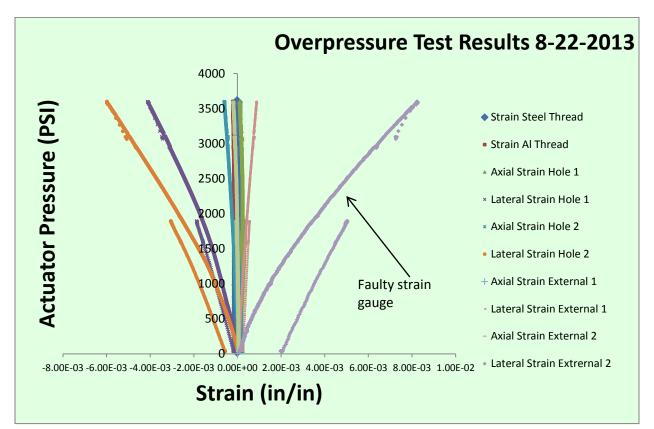


Figure S3. Results of pressure test to approximately 3673 psi.

During overpressure testing shown in Figure S3, fluid was placed in both the hydraulic cylinder and sample chamber. Pressure was increased inside the sample chamber. The test was performed with the vessel behind a Lexan barrier. The NPT fitting below the sample chamber leaked while pressure was applied, and thus it was retaped with Teflon and then did not leak. Pressure was increased to approximately 3598 psi and 3673 psi, respectively, for the hydraulic piston and within the sample chamber. Thus, the overpressure went to 1.22 (3673/3000) of 3,000 psi. The approximately highest pressure was held for approximately 10 minutes. The overpressure test was meant to achieve approximately 3,900 psi based on an original intended MAWP of 3000 psi (based on initial FEA that used even higher internal pressure; see finite element analysis below). However, the maximum pressure achieved in the sample chamber was \sim 3673 psi. Pressure and strain gauge data are shown in Figure S3. Note that the "Lateral Strain External 2" was faulty and the data should be ignored. The sample chamber is made of 7075 T6 Aluminum. For this aluminum, the yield strain is \sim 0.7% (see Oskouei and Ibrahim, 2011). The orange curve "Lateral Strain Hole 2" shows a strain of -0.6% at 3,600 psi, which is the maximum observed strain. Extrapolating from the orange curve on Figure S3 to obtain the yield at 0.7% strain, we obtain a corresponding pressure of 4,000 psi. If we use a Factor of Safety of 4 and ignore any effects of geometry and also ignore any fatigue effects of the aluminum, that brings us to an operating pressure of 4,000/4 = 1,000 psi. Thus, the MAWP is set to 1,000 psi, with PRV. The operating pressure was determined to be from 0 to approximately 950 psi. The vessel showed no visible leakage when taken to the highest pressure.

This Al-window oedometer is to only be operated while it is behind Lexan shielding. Lexan shielding includes a tube around the oedometer, and a Lexan box around the entire system. Calculation on stored energy show that the oedometer itself has less stored energy than a basketball, for conditions at high pressure (3,000 psi); our tests are performed at a much lower MAWP. Pressure sources for the oedometer include fluid inlet and outlets to the sample chamber, and the fluid port for the upper hydraulic load cell (see Figure S2). As just discussed, the MAWP of the oedometer system is 1,000 psi. This MAWP is 2,000 psi lower that the original Ti odeometer (see the discussion on the Ti oedometer below). Thus, when using this Alwindow oedometer, the PRVs must be set to 1,000 psi. The load cell is connected to a HiP pressure generator or ISCO pump, which is described in the piping system data package (not

S7

given here). The operating pressure for the piping system to the sample chamber is from 0-950 psi. The HiP pressure generator pressure, along with the sample swelling pressure, has a PRV also set to 1,000 psi. Thus, the PRV information here should be used for the piping system (in a different PSDP) when using this Al-steel oedometer.

S1.2. Finite Element Analysis of the OSC

The SolidWorks finite element analysis (FEA) report as prepared by co-author Mark Taylor is given in this section by component. This includes preliminary Factor-Of-Safety determinations by component shown in Figure 1, including the: A. hydraulic cylinder (ram); B. the pore pressure (CO2) isolation cylinders; and C. the sample (clay) chamber including the aluminum hydraulic

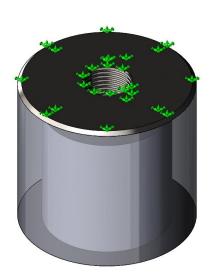
windows.

A. FE Simulation of Oedometer Hydraulic Cylinder Deformation

Date: Tuesday, July 30, 2013 Designer: M.Taylor

Study name: hydraulic chamber for oedometer

Analysis type: Static


Description

This report contains detailed information from a finite element stress analysis performed on the hydraulic cylinder, a part of the Los Alamos designed oedometer from July of 2013. A Solidworks FEA stress analysis was performed using the Solidworks Simulation software. In this study, the model was subjected to a simulated 4,000 psi hydrostatic load on all pressure exposed surfaces.

Conclusion

The stated minimum factor of safety is reported at 5.3, though it is evident from the stress map and the FOS map, this stress level is only found at one spot on an internal surface that is blanketed by layers of lower stressed material. The functional minimum FOS is measured by the stresses on the external walls of the vessel that would have to rupture in order for a failure to occur. By that measure the minimum factor of safety appears to be >7.

Model Information

Model name: Oedometer Hydraulic Cylinder Current Configuration: Default

Solid Bodies				
Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified	
Cut-Sweep2	Solid Body	Mass:0.136512 kg Volume:1.7064e-005 m^3 Density:8000 kg/m^3 Weight:1.33781 N	C:\Users\149306\Des ktop\Solidworks 2013\Oedometer Project\Oedometer Hydraulic Cylinder.SLDPRT Jul 25 09:20:20 2013	

Study Properties

Study name	hydraulic chamber for oedometer
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SolidWorks Flow Simulation	Off
Solver type	FFEPlus

Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off
Result folder	SolidWorks document (C:\Users\149306\Desktop\Solidworks 2013\Oedometer Project)

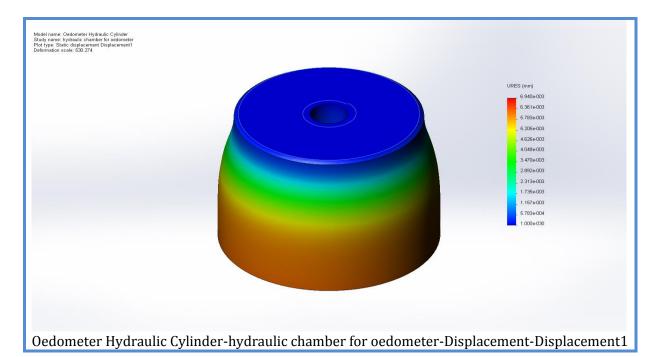
Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Material Properties

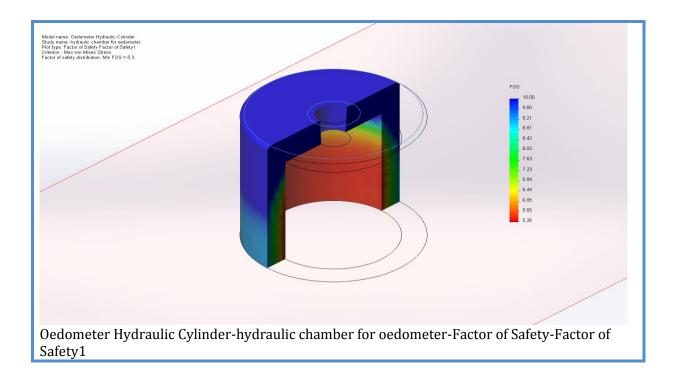
Model Reference	Properties		Components
	Name: Model type:	AISI 316 Stainless Steel Sheet (SS) Linear Elastic Isotropic	SolidBody 1(Cut- Sweep2)(Oedometer Hydraulic Cylinder)
	Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Thermal expansion coefficient:	Max von Mises Stress 25000 psi 84121.9 psi 2.79923e+007 psi 0.27 0.289018 lb/in^3 8.88889e-006 /Fahrenheit	
Curve Data:N/A			

Loads and Fixtures


Fixture name	Fixture Image	Fixture Details	
Fixed-1		Entities: Type:	1 face(s) Fixed Geometry

Load name	Load Image	Load Details	
Pressure-1		Entities: Type: Value: Units:	1 face(s) Normal to selected face 4000 psi

Study Results


Name	Туре	Min	Max
Stress1	VON: von Mises Stress	105.161 psi	16005.8 psi
		Node: 935	Node: 233
Model name: Oedomster Hydraulic Cylinder Study name: hydraulic Chamber for eedometer Pold type: Station and arress Stress Deformation scale: 530.274			von Mass (ps) 16,005 8 14,880 7 13,366 7 12,030 6 0,030 6 0,030 6 0,066 6 6,720 4 6,405 4 4,000 3
			. 2,756.3
			↓ 105.2
Oedometer Hydraul	ic Cylinder-hydraulic chamber	for oedometer-Stre	ss-Stress1

Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 mm Node: 236	0.00693973 mm Node: 11718

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	1.01087e-005	0.000458968
		Element: 2577	Element: 5076
Model name. Oedometer Hydraulic Cylinder Stady name, hydraulic chamber for oedometer Deformation scale: 530.274			ESTRN 4 590e-004 2 216e-004 3 842e-004 3 3099-004 2 2799-004 2 2345e-004 1 971e-004
			. 1.5970-004
			. 8.492e-005
			. 4.751e-005
			1.0110-005

Name	Туре	Min	Max
Factor of Safety1	Max von Mises Stress	5.25573 Node: 233	799.938 Node: 935

B. Simulation of CO2 cylinder for Porous Media Ram. Date: Tuesday, July 30, 2013 Designer: M. Taylor

Study name: CO2 chamber study

Analysis type: Static

Description

This report contains detailed information from a finite element stress analysis performed on the porous media ram cylinder, a part of the Los Alamos designed oedometer from July of 2013. A Solidworks FEA stress analysis was performed using the Solidworks Simulation software. In this study, the model was subjected to a simulated 4,000 psi hydrostatic load on all pressure exposed surfaces.

Conclusion

Although the stated minimum factor of safety is reported at 2.3, though it is evident from the stress map, this stress level is only found at one spot on an internal surface that is blanketed by layers of lower stressed material. The functional minimum FOS is measured by the stresses on the external walls of the vessel that would have to rupture in order for a failure to occur. By that measure the minimum factor of safety appears to be >6.

Model Information

Model name: C02 cylinder for ram Current Configuration: Default					
Solid Bodies					
Document Name and Reference	Treated As	Volumetric Properties	Documen t Path/Dat e Modified		
Cut-Sweep1	Solid Body	Mass:0.205309 kg Volume:2.55773e-005 m^3 Density:8027 kg/m^3 Weight:2.01203 N	C:\Users \149306 \Desktop \Solidwo rks 2013\Oe dometer Project\ CO2 cylinder for ram.SLD PRT Jul 25 08:40:33 2013		

Study Properties

Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SolidWorks Flow Simulation	Off
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off
Result folder	SolidWorks document (C:\Users\149306\Desktop\Solidworks 2013\Oedometer Project)

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	AISI Type 316L stainless steel Linear Elastic Isotropic Max von Mises Stress 1.7e+008 N/m^2 4.85e+008 N/m^2 2e+011 N/m^2 0.265 8027 kg/m^3 8.2e+010 N/m^2 1.65e-005 /Kelvin	SolidBody 1(Cut- Sweep1)(CO2 cylinder for ram)
Curve Data:N/A			

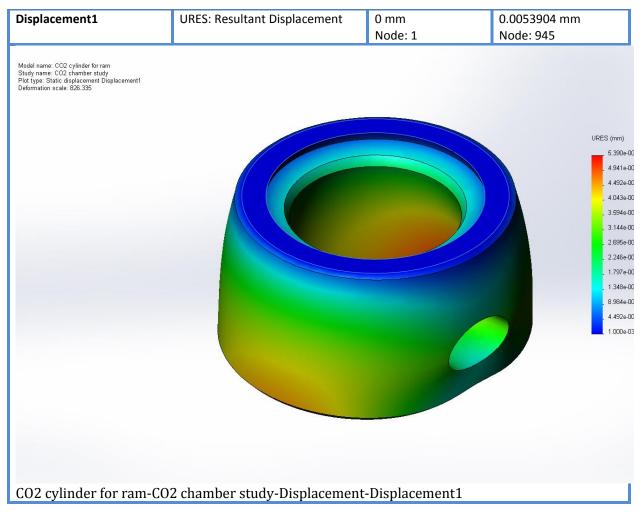
Loads and Fixtures

Fixture name	Fixture Image	Fixture Details	
Fixed-1		Entities: Type:	1 face(s) Fixed Geometry

Load name	Load Image	Load Details	
Pressure-1		Entities: Type: Value: Units:	1 face(s) Normal to selected face 4000 psi

Mesh Information

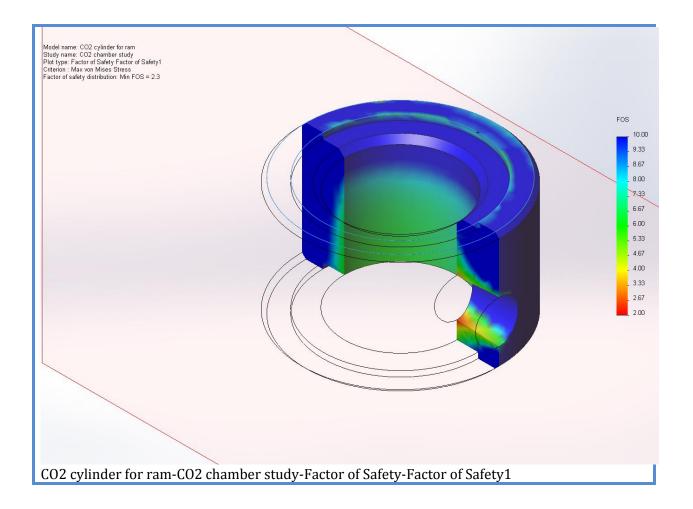
Mesh type	Solid Mesh	
Mesher Used:	Curvature based mesh	
Jacobian points	4 Points	
Maximum element size	0 in	


Minimum element size	0 in
Mesh Quality	High

Resultant Forces Reaction Forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	Ν	1632.02	-0.0420494	0.00940323	1632.02
Reaction Moments					
Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N-m	0	0	0	0

Study Results


Name	Туре	Min	Max
Stress1	VON: von Mises Stress	500.722 psi	30858.1 psi
		Node: 14896	Node: 220
Model name: CO2 cylinder for ram Study name: CO2 chamber study Plot type: Static nodal stress Stress1 Deformation scale: 826.335			von Mises (90,84 2,23,24 2,23,24 2,20,73 1,18,20 1,15,67 1,13,14 1,0,61 6,660 6,566
			. 3,030
CO2 cylinder for ra	m-CO2 chamber study-Stress-	Stress1	→ Yield stren
COZ CVIINGER IOR RA	in-CO2 chamber study-Stress-	SUESSI	

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	1.43285e-005	0.000641117
		Element: 7154	Element: 4797

Model name: CO2 cylinder for ram Study name: CO2 chamber study Plot type: Static strain Strain1 Deformation scale: 826.335		ESTRN 6.411e-00 5 689e-00 5 367e-00 4 4844e-00 4 322e-00 3 3600e-00 3 3277e-00 2 2755e-00 4 1.710e-00 1 1.188e-00 6 6.666e-00 1 1.433e-00
CO2 cylinder for ram-	-CO2 chamber study-Strain-Strain1	

Name	Туре	Min	Max
Factor of Safety1	Max von Mises Stress	2.27957 Node: 220	140.484 Node: 14896

C. Stress Simulation of Oedometer sample holder and neutron windows

Date: Tuesday, July 30, 2013 Designer: M. Taylor Study name: Sample chamber study Analysis type: Static

Description

The sample chamber of the Los Alamos designed oedometer proposed in July of 2013 was designed in Solidworks and an FEA stress analysis was performed using the Solidworks Simulation software. In this study, the model was subjected to a simulated 4,000 psi hydrostatic load on all pressure exposed surfaces.

Conclusion

Although the stated minimum factor of safety is reported at 2.1, it is evident that this stress level is only found on internal surfaces that are blanketed by layers of lower stressed material. The actually minimum should be measured by the stresses on the external walls of the vessel that

would have to rupture in order for a failure to occur. By that measure the minimum factor of safety appears to be >6.

Model Information

Model name: Oedometer Current Configuration: D Solid Bodies			
Document Name and Reference	Treated As	Volumetric Properties	Docume nt Path/Da te Modified
Cut-Extrude11	Solid Body	Mass:0.0643858 kg Volume:2.29131e-005 m^3 Density:2810 kg/m^3 Weight:0.630981 N	C:\Users \149306 \Deskto p\Solid works 2013\0 edomete r Project\ Fabricati on folder for Oedome ter\0ed ometer sample holder.S LDPRT Jul 30 09:14:5 8 2013

Study Properties

Study name	Sample chamber study
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SolidWorks Flow Simulation	Off
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off
Result folder	SolidWorks document (C:\Users\149306\Desktop\Solidworks 2013\Oedometer Project\Fabrication folder for Oedometer)

	nite
•	nus
-	

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

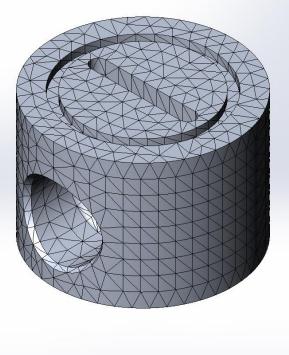
Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	7075-T6 (SN) Linear Elastic Isotropic Max von Mises Stress 5.05e+008 N/m^2 5.7e+008 N/m^2 7.2e+010 N/m^2 0.33 2810 kg/m^3 2.69e+010 N/m^2 2.36e-005 /Kelvin	SolidBody 1(Cut- Extrude11)(Oedometer sample holder)
Curve Data:N/A			

Loads and Fixtures

Fixture name	Fixture I	mage	Fixture Detai	ls	
Fixed-2			Entities: Type:		1 face(s) Fixed Geometry
Resultant Forces	;				
Components		Χ	Y	Z	Resultant
Reaction force(I	N)	-23.1866	785.506	12.4389	785.946
Reaction Mome	nt(N-m)	0	0	0	0

Load name	Load Image	Load Details	
Pressure-1		Entities: Type: Value: Units:	7 face(s) Normal to selected face 4000 psi

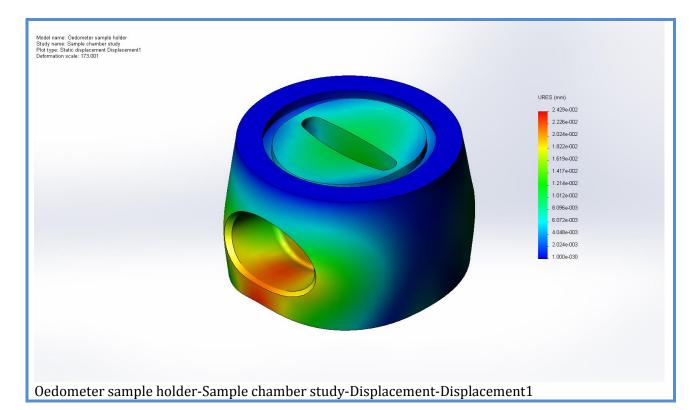

Mesh Information

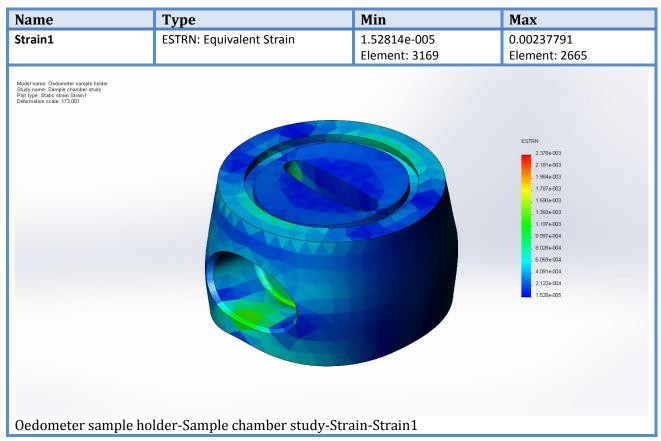
Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	0.11072 in
Tolerance	0.00553601 in
Mesh Quality	High

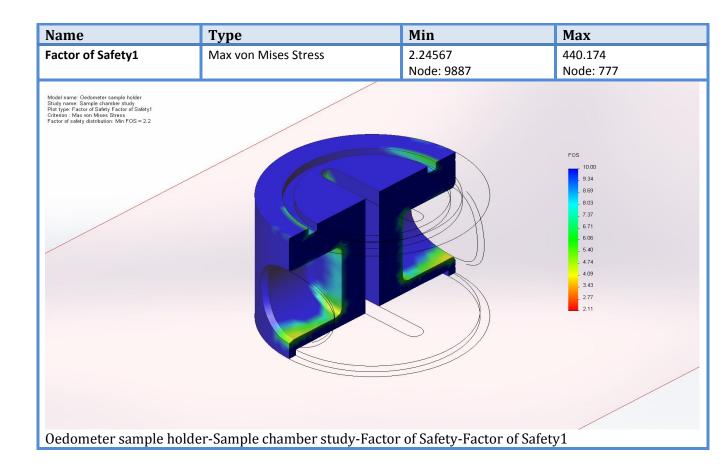
Mesh Information - Details

Total Nodes	14266
Total Elements	8932
Maximum Aspect Ratio	4.8503
% of elements with Aspect Ratio < 3	99.2
% of elements with Aspect Ratio > 10	0
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:02
Computer name:	PN1288161

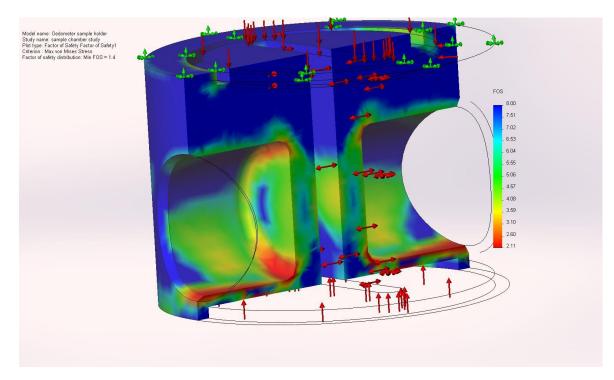
Model name: Oedometer sample holder Study name: Sample chamber study Mesh type: Solid mesh

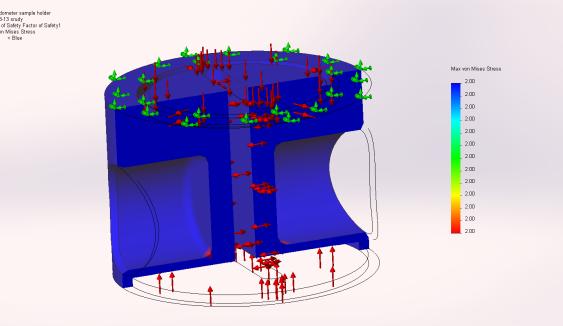

Resultant Forces

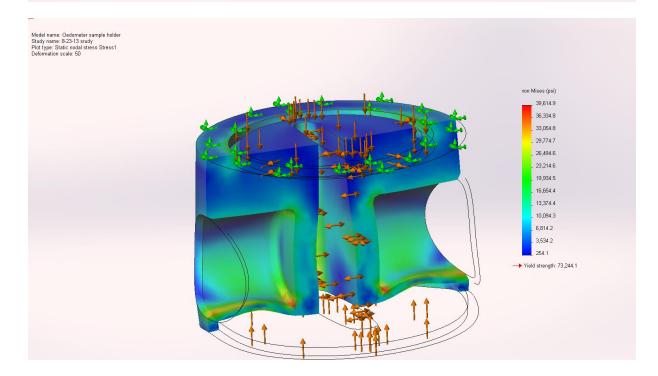

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	Ν	-23.1866	785.506	12.4389	785.946
Reaction Moments					
Selection set	Units	Sum X	Sum Y	Sum Z	Resultant

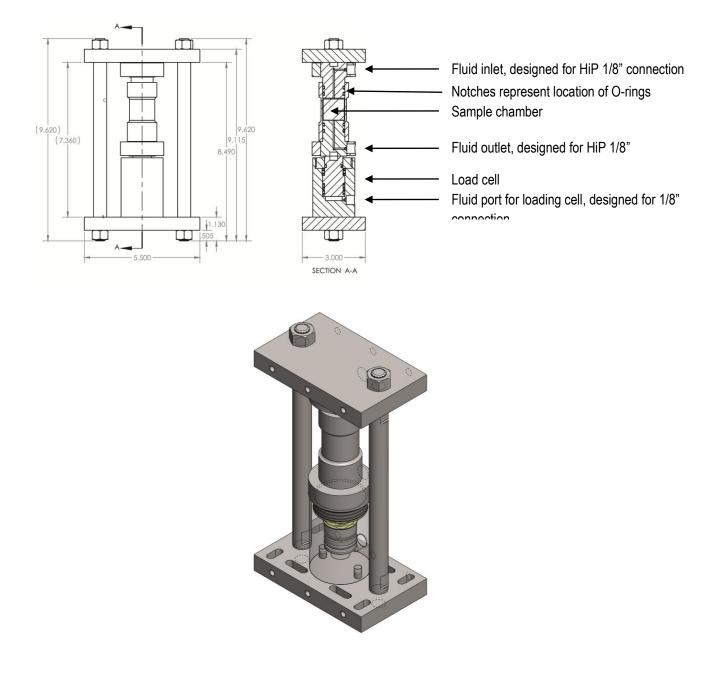

Study Results

Name	Туре	Min	Max
Stress1	VON: von Mises Stress	187.815 psi	36813.8 psi
		Node: 777	Node: 9887
Model name: Sample chamber study Plot type: Static nodal stress Stress1 Deformation scale: 173.001	holder-Sample chamber study-	Stress-Stress1	von Mises (ps) 96,8138 33,7616 30,7084 27,657.3 24,605.1 18,600.8 15,4486 12,396.5 9,344.3 6,282.1 3,20.0 187.8 → Yield strength: 73,244.1


Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 mm Nada: 221	0.0242887 mm
		Node: 221	Node: 13858




The following figure is another view of the FOS. The figure contains the results of 5,200 psi, based on the yield strength of 7075 T6. The min FOS is shown on the left side of the figure legend with a value of 1.4.


The following figure shows results using a finer mesh and is defined to show all places where the FOS is below 2. These areas should show in bright "red" based yield with a pressure of 4,000 psi. This means that according to the finite element analysis, there should have been no yielding until somewhere around 7,000 psi. According to the stress graph shown below the FOS graph, the maximum stress reached anywhere is 39,000psi, which is a little less than 3/5 of the yield strength.

Model name: Oedometer sample holder Study name: 8-23-13 srudy Plot type: Factor of Safety Factor of Safety1 Criterion : Max von Mises Stress Red < FOS = 2 < Blue

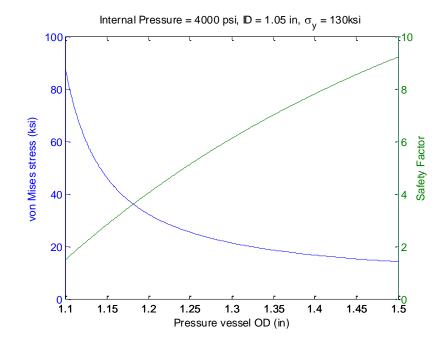
S1.3. Design, Materials, and Finite Element Modeling of the Titanium Oedometer The Titanium (Ti) oedometer contains a 1-inch (2.54 cm) diameter inner sample cavity for measuring "swelling" pressure as induced by clay samples subjected to dry or hydrous (i.e., water-bearing), sub- to supercritical CO₂. Figure S4 presents a schematic of the oedometer with annotation regarding fluid inlets and/or outlets, sample location, and dimensions. The maximum allowable working pressure (MAWP) of the entire oedometer system is 4000 psi (27.6 MPa).

Figure S4. Schematic diagram of Ti oedometer (i.e., constant-volume pressure cell) with annotation indicated by arrows. Length dimensions are given in inches.

The oedometer is a custom-built design. The custom components include everything shown in the lower portion of Figure S4 (the 3D image), except for the o-rings and return spring within the load cell. The o-rings are composed of ethylene propylene and thus resistant to supercritical CO₂. The oedometer design is based on the following:

- All titanium construction (Ti 6Al-4V), for low neutron attenuation (for potential neutron applications)
- Piston retraction spring
- Pressure vessel safety factor of 4x

A thin-wall pressure vessel stress analysis was performed on the sample housing to estimate the factor of safety against yielding for the chamber. The plot of von Mises stress versus wall thickness is shown in Figure S5 and was derived from equations S2-S5. The plot shows that with an ID of 1.05 in, an outer diameter of 1.21 in (0.079 in wall) provides a factor of safety of 4x against yielding.


$$\sigma_t = \frac{Pi * ri^2 * \left(1 + \frac{ro^2}{ri^2}\right)}{(ro^2 - ri^2)}$$
(S2)

$$\sigma_r = \frac{Pi * ri^2}{(ro^2 - ri^2)} * \left(1 - \frac{ro^2}{ri^2}\right)$$
(S3)

$$\sigma_z = 0 \tag{S4}$$

$$\sigma_{vm} = \sqrt{\frac{(\sigma_t - \sigma_r)^2 + (\sigma_r - \sigma_z)^2 + (\sigma_z - \sigma_t)^2}{2}}$$
(S5)

where σ_t is the tangential stress, σ_r is the radial stress, σ_z is the axial stress and σ_{vm} is the von Mises stress. *Pi*, r_i , and r_o are the internal pressure, pressure vessel inside radius, and pressure vessel outside radius respectively.

Figure S5. Result of thin-wall pressure vessel analysis to determine factor of safety for the sample chamber wall thickness.

A FEM analysis was performed on the actual part as a confirmation of the thin-wall analysis (Figure S6). The results of that simulation are shown below. For an internal pressure of 4000 psi, the von Mises stress in the housing is approximately 30 ksi. This is consistent with the thin-wall assumption for the previous analysis. The FEM results also show a factor of safety against yielding of 4x.

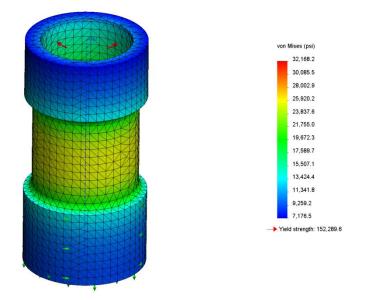


Figure S6. FEM analysis to determine factor of safety for the sample chamber wall thickness.

For the load cell portion of the oedometer, FEM was used to estimate the stresses in the body for a 4000 psi internal pressure. The results shown in Figure S7 indicate that there is substantial margin against yielding for the load cell portion of the vessel. Assuming a yield strength of 130 ksi, the factor of safety against yielding for the load cell housing is approximately 15x.

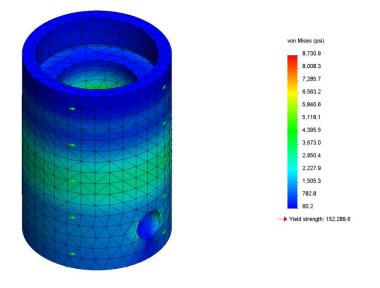
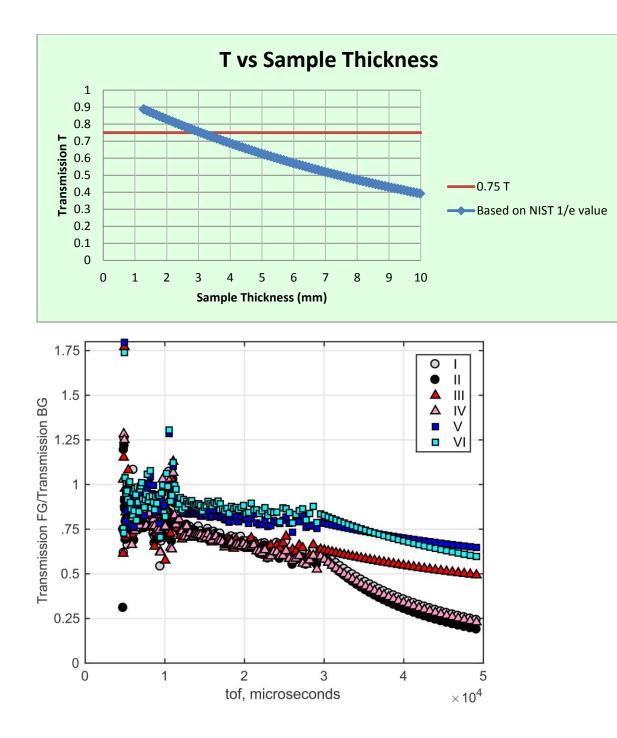


Figure S7. FEM analysis to determine factor of safety for the load cell.

Overpressure testing to 1.3 x MAWP (i.e., 5300 psi) was performed by filling the vessel sample chamber with water, plugging the ports and applying a pressure gradient to the peak pressure through the load cell housing. The fluid medium used to pressurize the load cell housing was Isopar H fluid. Once the fluid reached 5300 psi, it was held at constant pressure for seven hours to determine if leaks were present and measure any strain through strain gages mounted on the outside of the vessel within the gauge length. Two identifical Ti oedometer vessels were built. One vessel is designated as Oedometer-Ti-A and Oedometer-Ti-B. Both vessels were tested using this procedure.

S2. Neutron Beam Transmission as a Function of Sample Thickness, and Assessment of Multiple Scattering and Anisotropy


Calculations of neutron beam transmission through SWy-2 bentonite were performed using information from the NIST scattering length density online calculator at: https://www.ncnr.nist.gov/resources/sldcalc.html. Transmission > 0.75 is sought to avoid

multiple scattering. The compound name used in the calculator was the following, as only integer stoichiometry is supported in the calculator:

Ca12Na32K5Al303Fe41Mn1Mg54Ti2Si798Al2O2400H400. For the calculation, we assume pure smectite with no pore space. The NIST calculator provided scattering length density and neutron 1/e values, which were used in the following equation and to generate Figure S1:

$$T = \frac{I(d)}{I_0} = e^{-\sum_T d}$$
(S1)

A thickness of 3.08 mm corresponds to a transmission of 0.75 (Figure S1).

Figure S8. (Top) Neutron transmission versus sample thickness for SWy-2 bentonite. (**Middle**) Transmission of neutron beam through samples normalized by transmissions through the empty sample chamber versus time of flight (tof). Legend corresponds to Roman numerals of Section 3.2. (**Bottom**) Assessment of anisotropy in Q from assessment of Q variation as a function of azimuth, ϕ . The lack of any cusps or horizontal "streaks" in Q suggest there is little anisotropy in the scattering vector response for all loading conditions in our Oedometric SANS experiments. Here we show raw pixel data and not derived Q values. Legend corresponds to Roman numerals of Section 3.2.

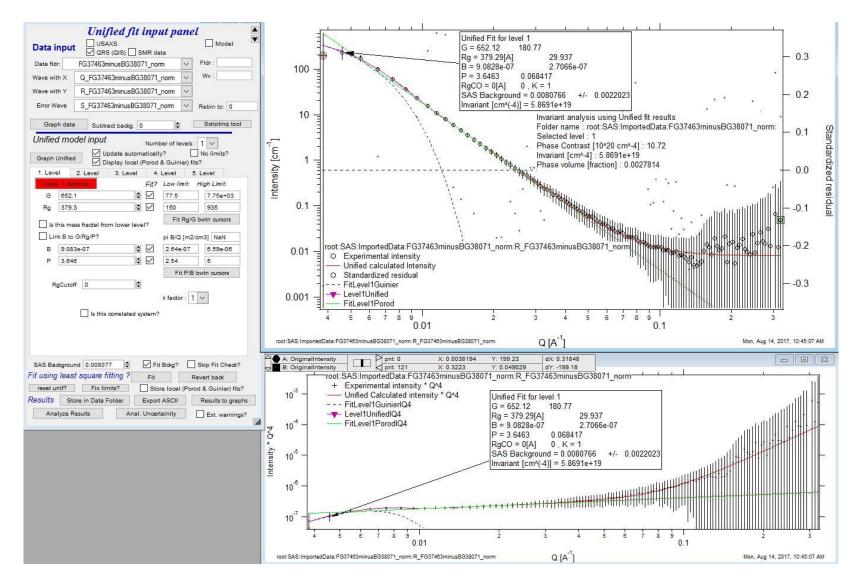
The greatest amounts of multiple scattering occur in the less consolidated sample measurements,

and the dry CO₂ measurement at zero effective stress (Figure S8 in Supporting Information).

Consolidation to higher effective stresses and wet pore conditions comparatively decreases

multiple scattering.

S3. SANS Interpretation and Parameter Sensitivity


Screenshots and information on the use of the Pore Size Distribution macros of the Irena package version 2.61 (Ilavsky and Jemian, 2009) with Igor Pro version 6.37 are given here. These screenshots are provided so that the reader can know exactly what parameters were chosen, and how the derivation of void distributions were done. These data are presented following the experimental stages as in main text (Section 3.1).

S3.1. Stage I Dry Consolidation

Stage I is compression of the bentonite clay in the sample chamber at a mass of 1.7 g and initial volume of 1.7206 cm³ under ~5 psig axial load on the hydraulic piston (or 7.74*5 psig to obtain the load on the clay itself). The Unified Fit model requires one level only. The pore filling fluid is assumed to be at 1 atm (14.67 psia) and 100% nitrogen to represent air. Scattering length densities and contrast for the clay and nitrogen is given in Table 1 in the main text. Figure S9 presents the Unified Fit parameters and results. Figure S10 presents the pore size distribution. Note that to obtain fits, the errors are multiplied by a value less than 1. For comparison, a scattering contrast between clay and vacuum $(10.753 * 10^{20} \text{ cm}^{-4})$ results in a relative change for the size volume distribution from the clay- N_2 case by ~0.5% or less. The choice of the final point at higher Q while fitting the data can affect the pore size distribution of the smallest scatterers. For example, choosing point 70 versus point 75 results in a shift of the peak to the smaller pore diameters with a higher peak, but the overall shape of the curve is not changed (Figure 12). As the choice of the final point in the fitting at higher Q can strongly affect the estimation of the smaller pores of the pore size distributions, we choose to fit each curve to the point 70 to have a consistent comparison. Some of the data at higher Q than point 70 may be real, but these will be neglected to achieve consistency of analysis from the different stages of the experiment (see Section 3.1 in the main text).

S3.2. Stage II Dry Consolidation

Stage II is compression is ~39 psig axial load on the hydraulic piston (or 7.74*39 psig to obtain the load on the clay itself). The Unified Fit model requires one level only. The pore filling fluid is assumed to be 100% nitrogen to represent air and at 1 atm (14.67 psia). The scattering length densities and scattering contrast for the clay and nitrogen is given in Table 1. Figure S13 presents the Unified Fit parameters and results. Figure S14 presents the pore size distribution. For comparison, a scattering contrast between clay and vacuum (10.753 $*10^{20}$ cm⁻⁴) results in relative differences for the size volume distribution from the clay-N₂ case by ~0.4% or less. Based on the strain of the titanium oedometer experiment, the aspect ratio of an oblate of 1.144 may represent the shape of the pores better than a sphere. Figure 15 plots the spherical versus oblate spheroid (at 1.144 aspect ratio) pore volume distributions for Stage II, illustrating that the two curves are very similar.

Figure S9. Screenshot of Unified Fit parameters and results for Stage I (sample ID 37463). Note that the correct scattering contrast was used in the fitting.

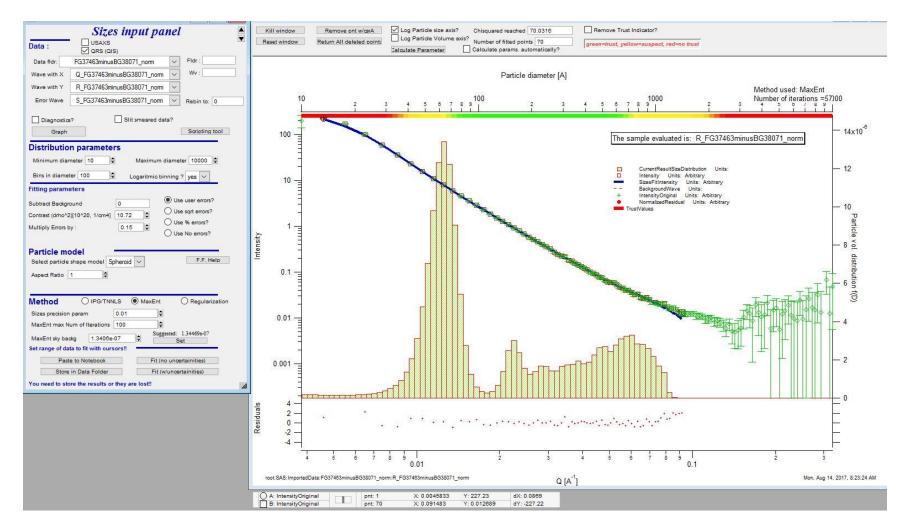
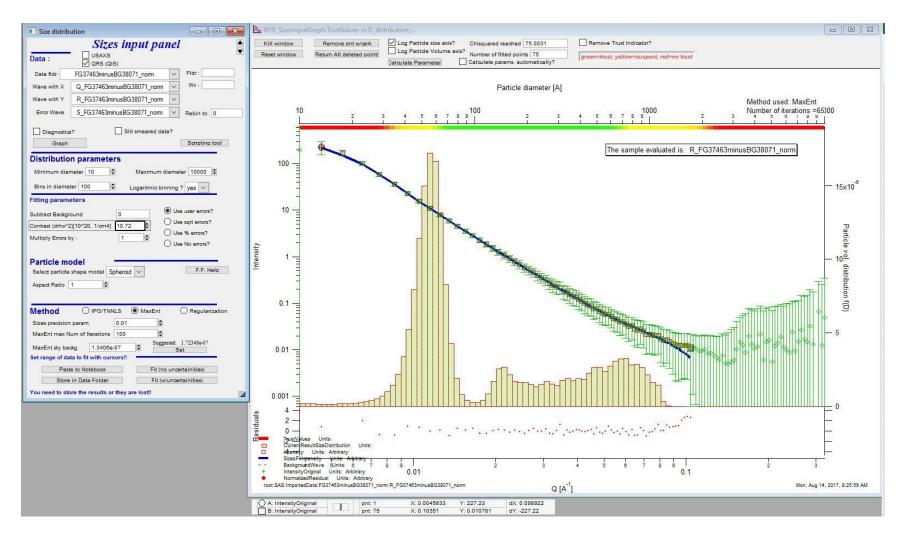
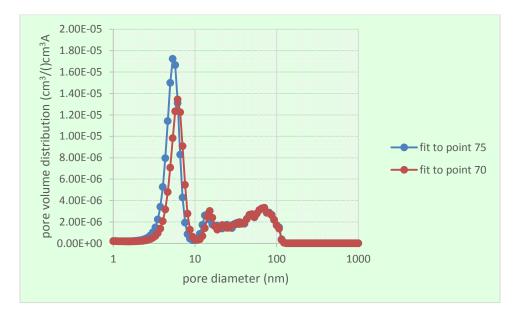




Figure S10. Screenshot of Pore Size Distribution parameters and results for Stage I (sample ID 37463).

Figure S11. Screenshot of Pore Size Distribution paramters of Figure S10, but fit to point 75 (not point 70). Also, the "Multiply Errors by" is set to one to show the plotting of the full error bars (although the value of 0.15 was used in fitting the data).

Figure S12. Pore volume distributions for the data set of Stage I, with curves fit to point 70 and point 75.

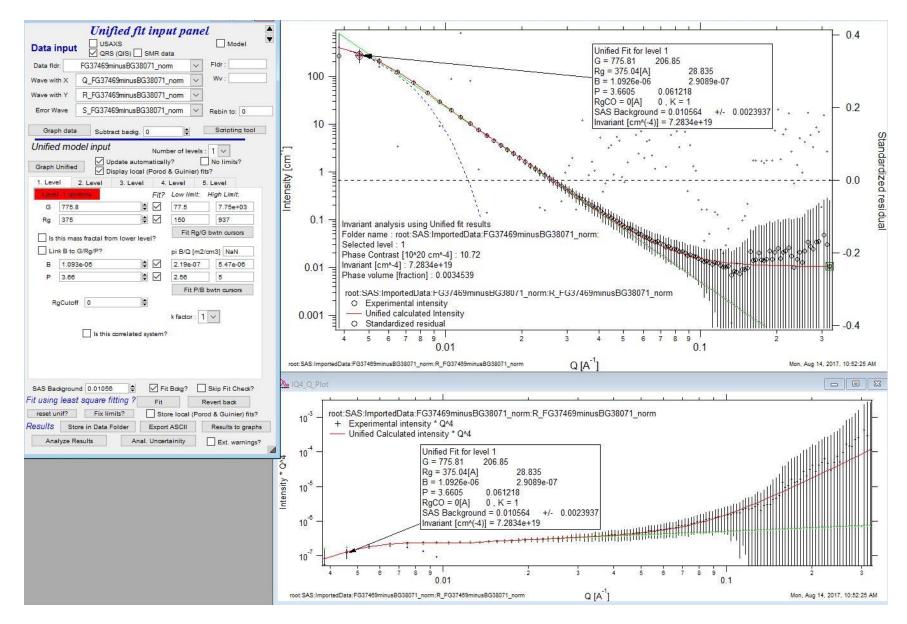


Figure S13. Screenshot of Unified Fit parameters and results for Stage II (sample ID 37469).

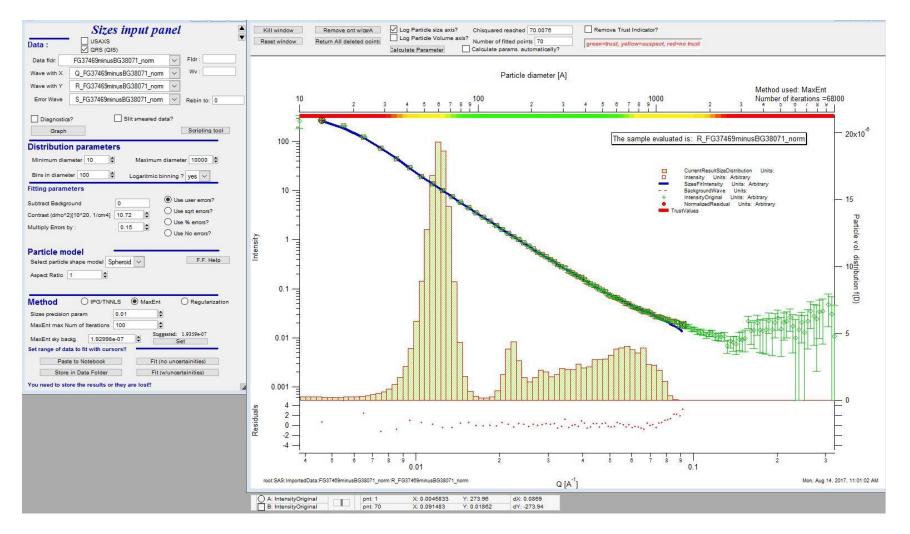
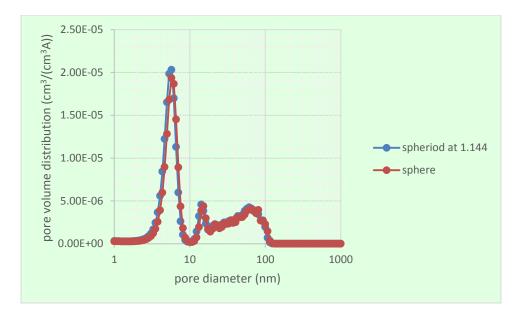



Figure S14. Screenshot of Pore Size Distribution parameters and results for Stage II (sample ID 37469), fit to point 70.

Figure S15. Pore volume distribution for Stage II modeled with spherical pore shapes versus oblate spheroid pore shapes at 1.144 aspect ratio.

S3.3. Stage III Hydrostatic Pressurization with Dry CO₂

Stage III compression is with dry CO_2 at pore pressure of approximately ~930 psig. Assuming dry pure CO_2 at a density of 0.817 g/cm³ (at a temperature of 18°C), the scattering contrast with the bentonite clay is 1.535 10^{20} cm⁻⁴. Figure S16 presents the Unified Fit results. Figure S17 gives the pore volume distribution for Stage III. Figure S18 illustrates that the sphere versus spheroid at aspect ratio of 1.123 pore shape (as based on the titanium experiment and the amount of strain) results in little change to the pore size distribution.

S3.4. Stage IV Post-Dry CO₂ Consolidation

Stage IV compression decreases the pore pressure to approximately 1 atm or ~ 0 psig (assuming 14.70 psia). The valve was closed after depressurizing to kept any sorbed or free CO_2 in the sample and from exchanging with atmospheric gases. Assuming dry pure CO_2 at a density of 1.85 g/cm³ (at a temperature of 18°C), the scattering contrast with the bentonite clay is

 1.535×10^{20} cm⁻⁴. Figure S19 presents the Unified Fit model results. Figure S20 gives the pore volume distribution for Stage III. Figure S21 illustrates that the sphere versus spheroid at aspect ratio of 1.202 pore shape (as based on the titanium experiment and the amount of strain) results in little change to the pore size distribution.

S3.5. Stage V Hydrostatic Pressurization with Wet CO₂

Stage V involved increasing the pore pressure to approximately 836 psig with wet CO₂; that is, CO₂ saturated with D₂O. The mass fraction of water (H₂O) dissolved in CO₂ at 836 psi is 0.001049 (Y_{H2Og}; see Section S.4.8). We assume that the dissolution of D₂O in CO₂ is similar to H₂O dissolved in CO₂—at the time of these calculations, we do not have an estimate of D₂O dissolution in CO₂. We use the Scattering Contrast tool in Irena to obtain the scattering contrast of water-saturated CO₂. The Scattering Contrast tool inputs integer values of stoichiometric coefficients; thus, the formula we use to represent Y_{H2Og} at 0.001049 in the tool is C99895101997902D209801049. The scattering contrast of the wet CO₂ and the SWy-2 clay is 1.635×10^{20} cm⁻⁴, which assumes a density of 800.81 kg/m³ (at a temperature of 18°C and a pressure of 836 psi—see Section S.4.8). Figure S22 presents the Unified Fit model parameters and results. Figure S23 gives the pore volume distribution for Stage V. Figure S24 illustrates that the sphere versus spheroid at aspect ratio of 1.207 pore shape (as based on the titanium experiment and the amount of strain) results in little change to the pore size distribution.

S3.6. Stage VI Post-Wet CO₂ Consolidation

Stage VI is the change from high pressure wet CO_2 to low pressure wet CO_2 by opening the port to the pore fluid and allowing it to depressurize. After depressurization, the valve was closed to keep atmospheric gases from exchanging with possibly sorbed CO_2 and water or the wet CO_2 in the pores. The pore pressure when placed in the beam was approximately 3 psig. Using approximately atmospheric pressure (14.7 psia), the density of wet CO_2 of 0.18531 kg/m³, and the mass fraction of 0.0084921 of H₂O in CO₂ at 18°C (see Section S.4.8), we obtain a scattering contrast of 10.72×10^{20} cm⁻⁴ using the Scattering Contrast tool of Irena. The Scattering Contrast tool inputs integer values of stoichiometric coefficients; thus, the formula we use to represent Y_{H2Og} at 0.0084921 in the tool is C9915079O19830158D169842O84921. Figure S25 presents the Unified Fit model parameters and results. Figure S26 gives the pore volume distribution for Stage VI. Figure S27 presents the pore size distribution as based on the sphere versus spheroid at aspect ratio of 1.461 pore shape (as based on the titanium experiment and the amount of strain). The pore size distribution results have the greatest change for sphere versus spheroid as compared to the other experiments stages.

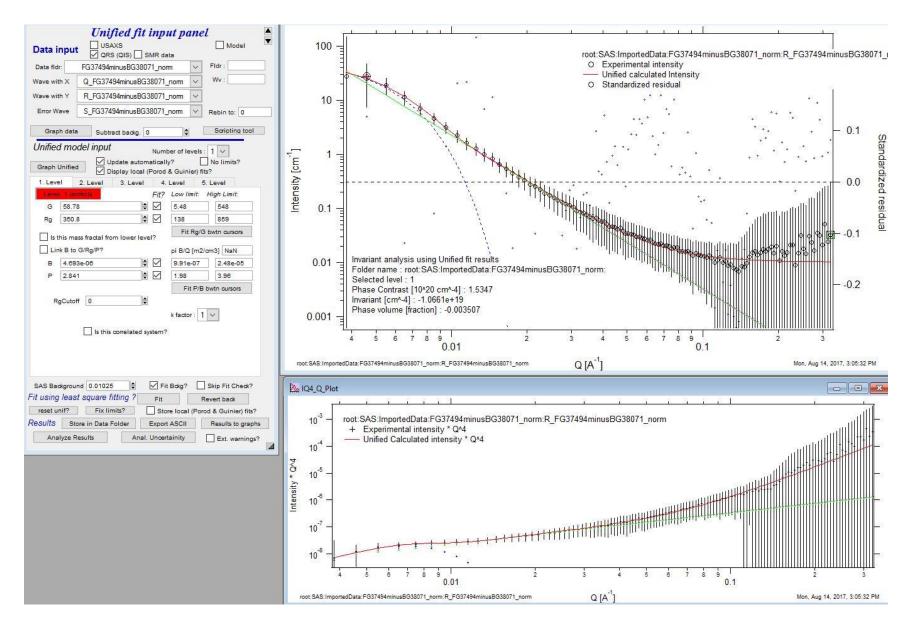


Figure S16. Screenshot of Unified Fit parameters and results for Stage III (sample ID 37494).

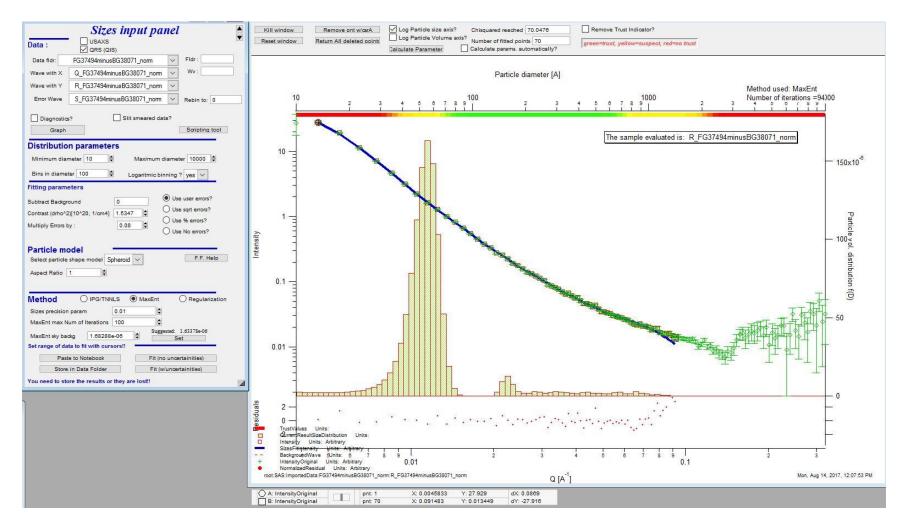
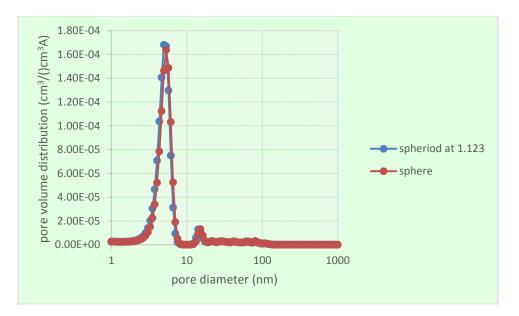



Figure S17. Screenshot of Pore Size Distribution parameters and results for Stage III (sample ID 37494), fit to point 70.

Figure S18. Pore volume distribution for Stage III modeled with spherical pore shapes versus oblate spheroid pore shapes at 1.123 aspect ratio.

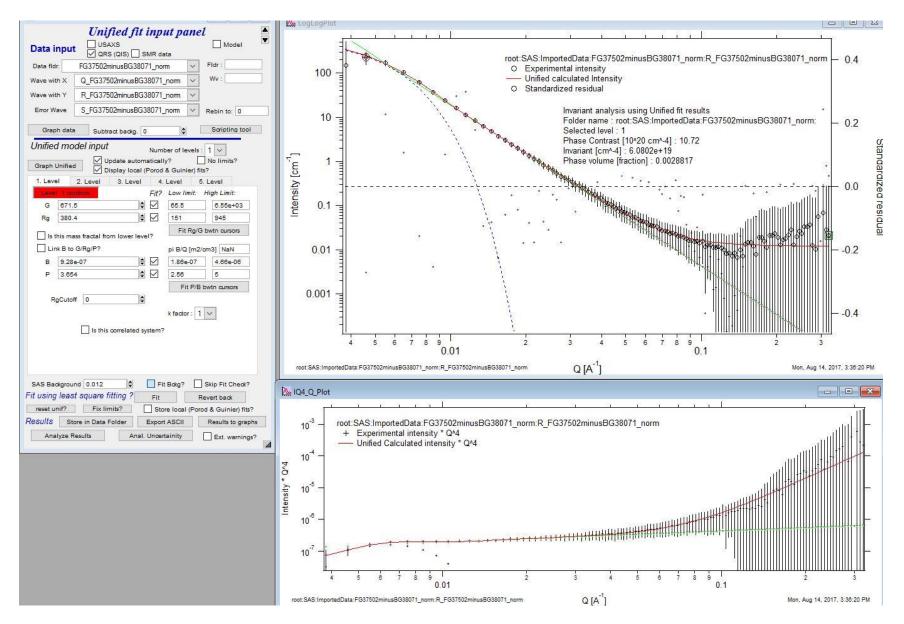


Figure S19. Screenshot of Unified Fit parameters and results for Stage IV (sample ID 37502).

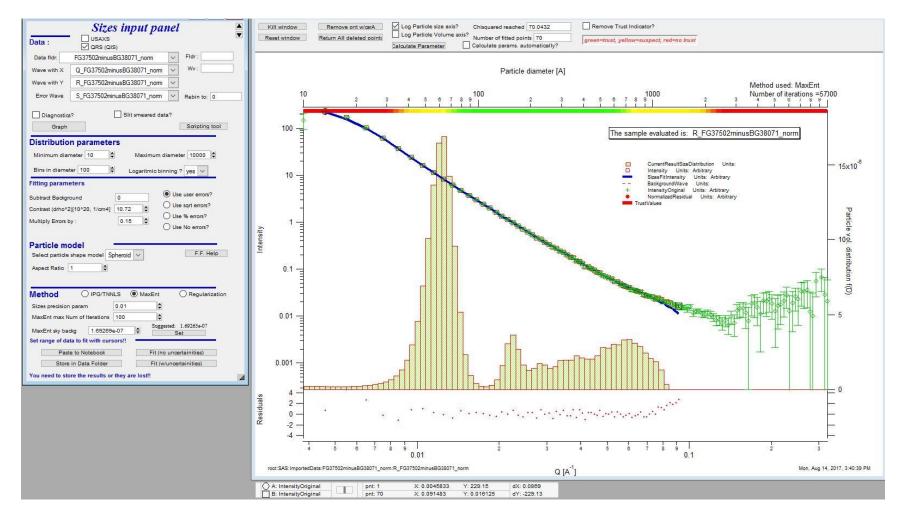
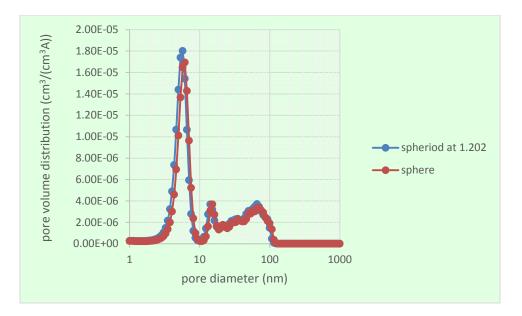



Figure S20. Screenshot of Pore Size Distribution parameters and results for Stage IV (sample ID 37502), fit to point 70.

Figure S21. Pore volume distribution for Stage IV modeled with spherical pore shapes versus oblate spheroid pore shapes at 1.202 aspect ratio.

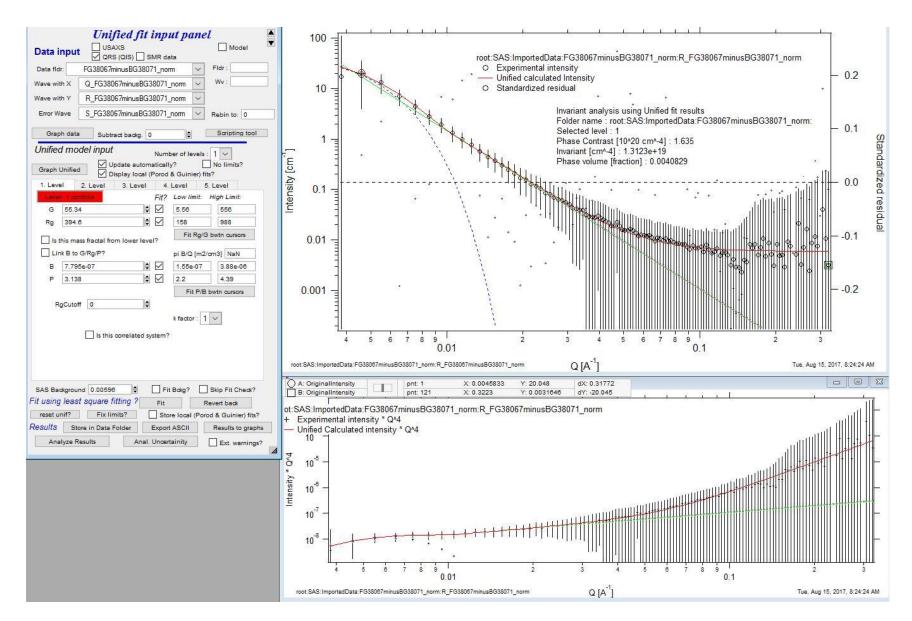


Figure S22. Screenshot of Unified Fit parameters and results for Stage V (sample ID 38067).

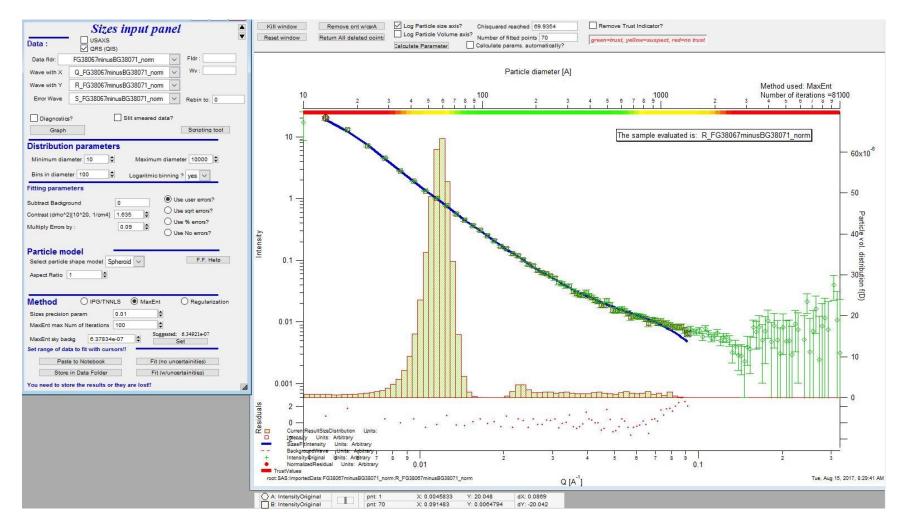
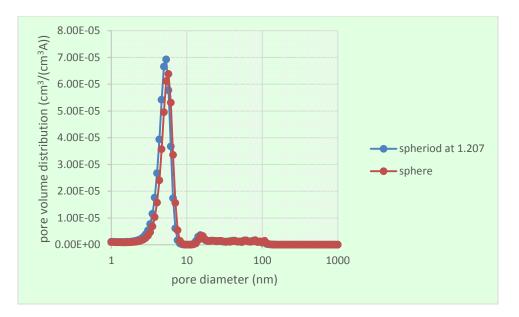



Figure S23. Screenshot of Pore Size Distribution parameters and results for Stage V (sample ID 38067), fit to point 70.

Figure S24. Pore volume distribution for Stage V modeled with spherical pore shapes versus oblate spheroid pore shapes at 1.207 aspect ratio.

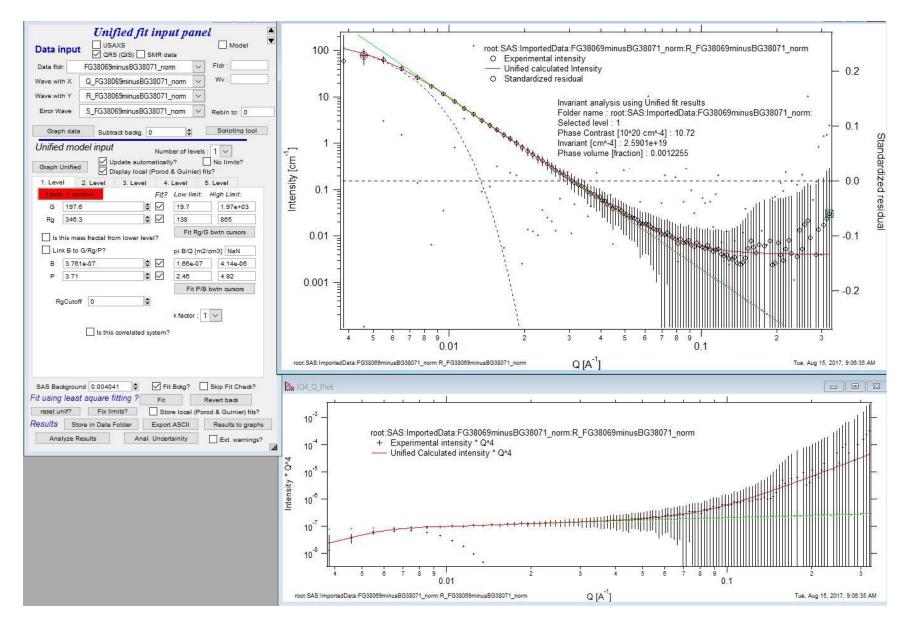
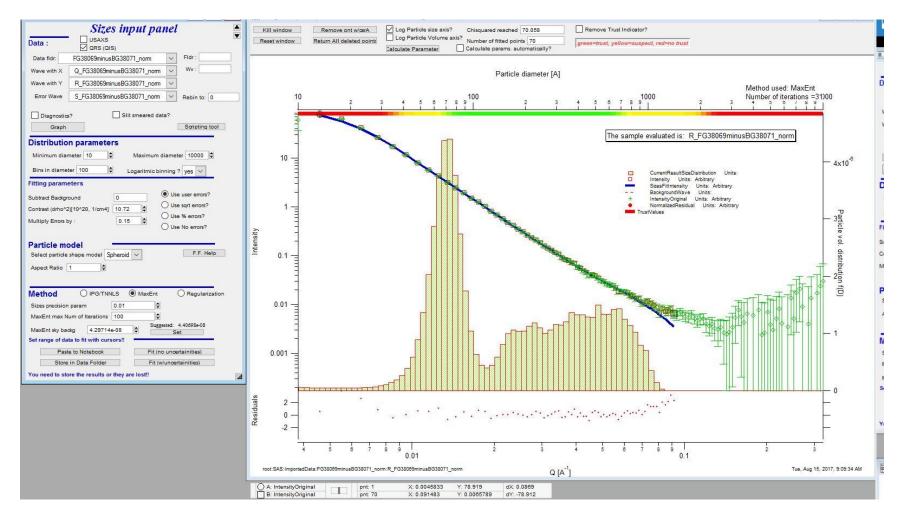
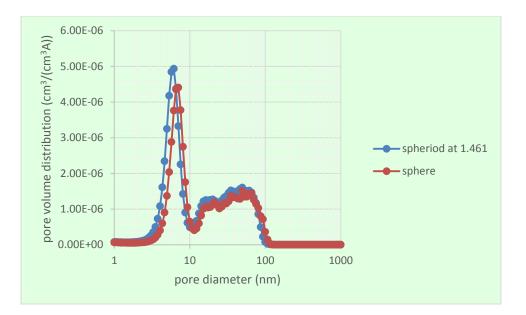
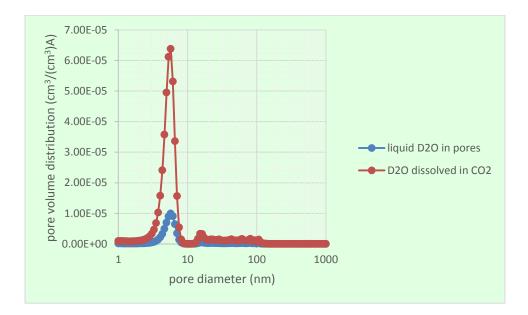
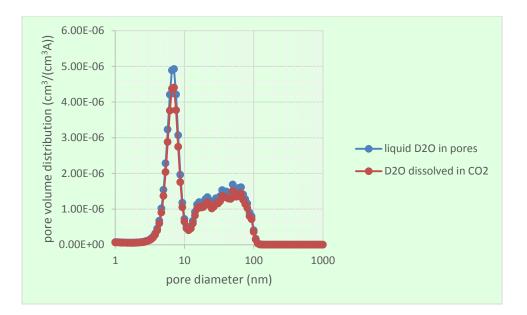


Figure S25. Screenshot of Unified Fit parameters and results for Stage VI (sample ID 38069).


Figure S26. Screenshot of Pore Size Distribution parameters and results for Stage VI (sample ID 38069), fit to point 70.


Figure S27. Pore volume distribution for Stage VI modeled with spherical pore shapes versus oblate spheroid pore shapes at 1.461 aspect ratio.

S3.7. Sensitivity of Pore Size Distribution Interpretations to Scattering Contrast.

We assumed in the wet CO₂ stages V and VI that D₂O was dissolved in the CO₂ at saturation. It is possible that the process of flowing wet CO₂ through the sample allowed adsorption or capillary condensation of liquid water in pores. Thus, to assess potential effects of liquid water, we rerun the pore size distributions of Stage V and VI with scattering contrast of 9.582×10^{20} cm⁻⁴, which is that of the clay and D₂O at standard atmospheric pressure and temperature (with density of 1.107 g/cm³). This is a first approximation to see how the pore size distribution would change as interpreted with fully-D₂O saturated pores. Figure S28 (assuming spherical pores) indicates that the height of the peak is greatly increased in the case of liquid D₂O in pores versus D₂O dissolved to saturation in the pores. Figure S29 shows that the liquid D₂O assume for Stage V results in little change in the pore size distribution. The high-pressure CO₂ stages of III and V, for dry and wet CO₂, have similar scattering contrast values of 1.54 and 1.64 × 10²⁰ cm⁻⁴, due to the small amount of D₂O that can dissolved in dry and liquid CO₂. Assuming fully saturated pores with D₂O instead of high pressure CO₂ gives much different scattering contrast of 9.582 × 10^{20} cm⁻⁴, which in turn causes a large difference in the pore size distribution (Figure S28). However, for low pressure, the dry and wet CO₂ scattering contrast values are more similar to that of liquid D₂O, with values of ~10.72 versus 9.58×10^{20} cm⁻⁴, respectively. Thus, the low pressure dry and wet CO₂ cases do not show a large difference from the case of liquid D₂O in pores (Figure S29).

Figure S28. For Stage V, pore size distribution replotted assuming a scattering contrast of liquid D2O and clay versus a scattering contrast of D_2O dissolved in CO_2 at the temperature and pressure of Stage V.

Figure S29. For Stage VI, pore size distribution replotted assuming a scattering contrast of liquid D_2O and clay versus a scattering contrast of D_2O dissolved in CO_2 at the temperature and pressure of Stage V.

S4. TOUGH2 Calculations of Water Saturation and Liquid CO₂ Density, and Calculations of Scattering Contrast

Calculations of scattering contrast require the density of dry and wet CO_2 and the amount of dissolved water in CO_2 at the various pressures and the temperature of 18°C. The density of liquid CO2 at water saturation values at various pressure was obtained using an equation of state for CO_2 as implemented in TOUGH2 (Pruess, 2005). Figure S30 presents the range in TOUGH2calculated density and saturation of water in CO_2 for the pressure encountered in this study. This can be used to estimate the volume of water available for clay swelling observed in moving from stage IV to stage V in both OSC and TIOC experiments. The mass fraction of water dissolved in liquid CO_2 at the conditions of stage V are seen to be 0.001 kg_{H2O}/kg_{CO2}. (Figure S30). All this water scavenged into smectite interlayer regions would involve a volume of approximately 0.0083 m³H₂O/m³CO₂, using interlayer densities of water of 1000 kg/m³ and liquid CO₂ of 820 kg/m³. At a void ratio at during stage V observed to be ~0.74 and a total volume of solids of 8.2 cm³ for TIOC and 0.81 cm³ for OSC, we calculate a total CO₂ volume of about 6 x 10⁻⁶ m³ and 0.60 x 10⁻⁶ m³ respectively. The associated volume of water available for swelling would be about $5x10^{-8}$ m³ or 5 x 10⁻² cm³ for the TIOC test and approximately ten times less for OSC.

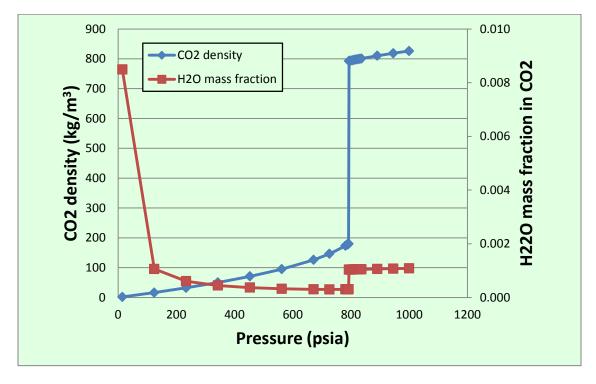


Figure S30. CO₂ density and H₂O mass fraction dissolved in CO₂ as a function of pressure.

The Scattering Contrast Calculator macro of the Irena package was used to calculate neutron scattering length density and scattering contrast for the nitrogen (air), dry and wet CO_2 , and SWy-2 environments. Scattering contrast is an input to the Size Distribution macro of Irena that is used to calculate pore size distribution. The main inputs to the scattering contrast calculator are chemical formulas (with integer stoichiometric coefficients) and densities of the substances in questions. For air (nitrogen) and SWy-2, we assume densities of 0.001165 g/cm³ and 2.3 g/cm³. For dry and wet CO_2 , we obtain densities at the relevant pressures and temperatures, including mass fractions of dissolved water in CO_2 , from the TOUGH2-ECO2N code (Pruess, 2005). For the wet CO_2 case, the stoichiometric formula was calculated to reflect the water mass fraction in CO_2 . Figures S1-S5 are screenshots of the scattering contrast calculator for the different SANS-oedometer stages that included pairs of SWy-2 with nitrogen and dry or wet CO_2 . Specific details for pressure conditions and stochiometric formulas used for wet CO_2 are given in the figure captions.

Parame	ters						
	SI	LD [10 ¹⁰ cn	∩ ⁻²] ^a				
stage	Swy-2	N_2	CO ₂	$\Delta \rho^2 [10^{20} \text{ cm}^{-4}]^{b}$			
I.	3.279	0.0047	-	10.72			
П	3.279	0.0047	-	10.72			
111	3.279	-	2.04 ^c	1.54			
IV	3.279	-	0.0046 ^c	10.72			
V	3.279	-	2.001 ^d	1.635			
VI	3.279	-	0.0047 ^d	10.72			
^a Neutro	n scatterir	ng length d	lensity.				

^bScattering contrast.

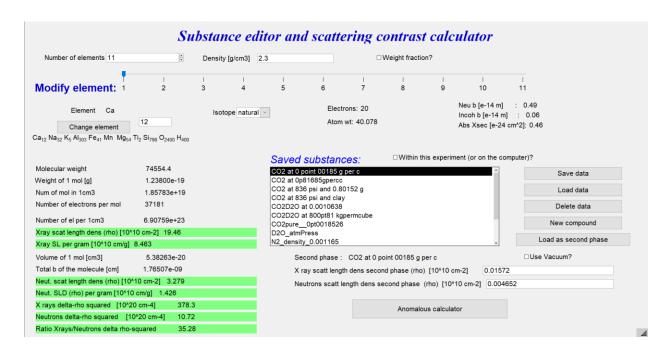
^cDry CO_{2.}

^dWet CO₂

Number of elements 11	\$	Density [g/cm3] 2.3		Weight frac	tion?	
Modify element:	 2 3 4 5	6789	I I I 9 10 11			
Element Ca Change element a ₁₂ Na ₃₂ K ₅ Al ₃₀₃ Fe ₄₁ Mn Mg ₅₄	12 Ti ₂ Si ₇₉₈ O ₂₄₀₀ H ₄₀₀	Isotope natural v]	Electrons: 20 Atom wt: 40.078	Neu b [e-14 m] : Incoh b [e-14 m] : Abs Xsec [e-24 cm ⁴ 2]	0.06
dele euler weight	74554.4		Saved subs	stances.	n this experiment (or on the compute	r)?
Molecular weight	74004.4 1.23800e-19		CO2 at 836 psi ar		^	Save data
Weight of 1 mol [g]			CO2D2O at 0.001 CO2D2O at 800p			Load data
Num of mol in 1cm3			D2O atmPress			
Number of electrons per mol	37181		N2_density_0.001			Delete data
Number of el per 1cm3	6.90759e+23		N2_density_0.001			New compound
Xray scat length dens (rho) [10 [^]	10 cm-2] 19.46		Swy-2_combined Swy-2 notCombined			
Xray SL per gram [10 ^A 10 cm/g]	8.463			inou inou	~	Load as second phase
Volume of 1 mol [cm3]	5.38263e-20		Second p	hase : N2_density_0		Use Vacuum?
Total b of the molecule [cm]	1.76507e-09		X ray sca	att length dens second phase (rho)	[10^10 cm-2] 0.0098801	
Neut. scat length dens (rho) [10	10 cm-2] 3.279		Neutrons	scatt length dens second phase	(rho) [10^10 cm-2] 0.004688	
) cm/a] 1 426			gar dene eerena pridoe		
Neut. SLD (rho) per gram [10 [*] 10						
Neut. SLD (rho) per gram [10^10 X rays delta-rho squared [10^2	•.			Anom	alous calculator	
	0 cm-4] 378.5			Anoma	alous calculator	

Figure S31. Screen shot of Scattering Contrast Calculator for SWy-2 and N₂, which corresponds with Stages I and II.

	Sul	bstance edi	tor and scattering contrast calcula	tor	
Number of elements 11	* *	Density [g/cm3] 2.	3 UWeight fraction?		
Modify element:	1 ' I ' I 2 4 6	' ' ' 8 10			
Element Ca Change element Ca ₁₂ Na ₃₂ K ₅ Al ₃₀₃ Fe ₄₁ Mn Mg ₅₄	12 Ti ₂ Si ₇₉₈ O ₂₄₀₀ H ₄₀₀	Isotope natural	Atom with 40.078	b [e-14 m] h b [e-14 m] Xsec [e-24 cm	: 0.06
			Saved substances:	or on the comp	uter)?
Molecular weight	74554.4		CO2 at 0 point 00185 g per c	^	Save data
Weight of 1 mol [g]	1.23800e-19		CO2 at 0p81685gpercc CO2 at 836 psi and 0.80152 g	_	Load data
Num of mol in 1cm3	1.85783e+19		CO2 at 836 psi and clay		Load data
Number of electrons per mol	37181		CO2D2O at 0.0010638		Delete data
Number of el per 1cm3	6.90759e+23		CO2D2O at 800pt81 kgpermcube D2O atmPress		New compound
Xray scat length dens (rho) [10 ^A	10 cm-2] 19.46		N2 density 0.001165		
Xray SL per gram [10^10 cm/g] 8.463			N2_density_0.00117454	~	Load as second phase
Volume of 1 mol [cm3]	5.38263e-20		Second phase : CO2 at 0p81685gpercc		□Use Vacuum?
Total b of the molecule [cm]	1.76507e-09		X ray scatt length dens second phase (rho) [10^10 cm-2]	6.9293	
Neut. scat length dens (rho) [10^10 cm-2] 3.279			Neutrons scatt length dens second phase (rho) [10^10 cm-2] 2.04		
Neut. SLD (rho) per gram [10^10	0 cm/g] 1.426		Heatens sourcenger dens second phase (ind) [10 10 cm	2] 2.04	
X rays delta-rho squared [10^2			Anomalous calculator		
Neutrons delta-rho squared [1	0^20 cm-4] 1.535		Anomalous calculator		
Ratio Xrays/Neutrons delta rho-	squared 102.4				


Figure S32. Screen shot of Scattering Contrast Calculator for SWy-2 and pure CO_2 at a density of 0.81685 g/cm³ (at the pressure of 930 psia), which corresponds with Stage III.

	Subst	ance edit	or and scattering contrast calculate	or and the second se
Number of elements 11	*	Density [g/cm3]	2.3	
	2 4 6	8 10		
Element Ca Change element Ca ₁₂ Na ₃₂ K ₅ Al ₃₀₃ Fe ₄₁ Mn Mg	12 ₅₄ Ti ₂ Si ₇₉₈ O ₂₄₀₀ H ₄₀	Isotope natural	Liectrons: 20 Incoh b [e-1	4 m] : 0.49 4 m] : 0.06 24 cm^2]: 0.46
			Saved substances:	he computer)?
Molecular weight	74554.4		CO2 at 836 psi and clay	Save data
Weight of 1 mol [g]	1.23800e-19		CO2D2O at 0.0010638 CO2D2O at 800pt81 kgpermcube	
Num of mol in 1cm3	1.85783e+19		CO2b2O at 800pt81 kgperincube	Load data
Number of electrons per mol	37181		D2O_atmPress	Delete data
Number of el per 1cm3	6.90759e+23		N2_density_0.001165 N2_density_0.00117454	Newsersed
Xray scat length dens (rho) [10			Swy-2 combined	New compound
Xray SL per gram [10^10 cm/g]			Swy-2_notCombined	Load as second phase
			0	□Use Vacuum?
Volume of 1 mol [cm3]	5.38263e-20		Second phase : CO2pure_0pt0018526	
Total b of the molecule [cm]	1.76507e-09		X ray scatt length dens second phase (rho) [10^10 cm-2]	0.015716
Neut. scat length dens (rho) [10	-		Neutrons scatt length dens second phase (rho) [10^10 cm-2]	0.004627
Neut. SLD (rho) per gram [10^				
X rays delta-rho squared [10^			Anomalous calculator	
Neutrons delta-rho squared [10^20 cm-4] 10.	72		
Ratio Xrays/Neutrons delta rho	-squared 35.2	28		

Figure S33. Screen shot of Scattering Contrast Calculator for SWy-2 and pure CO_2 at a density of 0.0018526 g/cm³ (at the pressure of 14.7 psia), which corresponds with Stage IV.

	Su	bstance editor	and scattering contrast	t calculator	
Number of elements 11	a v	Density [g/cm3] 2.3	□ Weight fraction	on?	
Modify element:	' ' 2 4 6	' ' ' 8 10			
Element Ca		Isotope natural ~	Electrons: 20		0.49
	12		Atom wt: 40.078	Incoh b [e-14 m] Abs Xsec [e-24 cm	
Change element				Abs Asec [e-24 chi	2]. 0.40
Ca ₁₂ Na ₃₂ K ₅ Al ₃₀₃ Fe ₄₁ Mn Mg ₅₄	12 31798 02400 11400				
		Sa	ved substances: ••• Within the	his experiment (or on the comp	uter)?
Molecular weight	74554.4	CO	2 at 0 point 00185 g per c	^	Save data
Weight of 1 mol [g]	1.23800e-19		2 at 0p81685gpercc		
Num of mol in 1cm3	1.85783e+19		2 at 836 psi and 0.80152 g 2 at 836 psi and clay		Load data
Number of electrons per mol	37181		2D2O at 0.0010638		Delete data
Number of el per 1cm3	6.90759e+23		2D2O at 800pt81 kgpermcube D_atmPress		New compound
Xray scat length dens (rho) [10 [^]	10 cm-2] 19.46		density 0.001165		iter compound
Xray SL per gram [10^10 cm/g] 8.463			density_0.00117454	~	Load as second phase
Volume of 1 mol [cm3]	5.38263e-20		Second phase : CO2D2O at 800pt81 kgp	permcube	□Use Vacuum?
Total b of the molecule [cm]	1.76507e-09		X ray scatt length dens second phase (rho) [10^10 cm-2] 6.7933	
Neut. scat length dens (rho) [10^10 cm-2] 3.279			Neutrons scatt length dens second phase (rho) [10^10 cm-2] 2.001		
Neut. SLD (rho) per gram [10^10	0 cm/g] 1.426				
X rays delta-rho squared [10*20 cm-4] 160.6			Anomalo	ous calculator	
Neutrons delta-rho squared [1	0^20 cm-4] 1.635				
Ratio Xrays/Neutrons delta rho-	squared 98.22				

Figure S34. Screen shot of Scattering Contrast Calculator for SWy-2 and wet CO_2 at a density of 0.800810 g/cm³ (at the pressure of 836 psia) and a mass fraction of dissolved water of 0.0010490, which corresponds with Stage V. The formula for wet CO_2 was determined based on the mass fraction of dissolved water (which needed to be given in integer values), which is C99895101997902D209801049.

Figure S35. Screen shot of Scattering Contrast Calculator for SWy-2 and wet CO_2 at a density of 0.0018531 g/cm³ (at the pressure of 14.7 psia) and a mass fraction of dissolved water of 0.00849210, which corresponds with Stage VI. The formula for wet CO_2 was determined based on the mass fraction of dissolved water (which needed to be given in integer values), which is C9915079O19830158D169842O84921.

References

Ilvasky, J., 2017, Irena SAS modeling macros manual, version 2.62 (for Igor 6.37 and Igor 7).Oskouei, R.H., Ibrahim, R.N, 2011, Restoring the tensile properties of PVD-TiN coated Al 7075-T6 using a post heat treatment. Surface & Coatings Technology 205, 3967-3973.

Pruess, K., 2005, ECO2N: A TOUGH2 fluid property module for mixtures of Water, NaCl, and CO₂, LBNL-57952, Lawrence Berkeley National Laboratory, 76 p.

Pruess, K. ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2; LBNL-57952; Lawrence Berkeley National Laboratory: Berkeley, CA, 2005; p 66.