1	Supporting Information
2	For
3	
4	Direct Observation of Simultaneous Immobilization of
5	Cadmium and Arsenate at the Brushite-Fluid Interface
6	
7	Hang Zhai,† Lijun Wang,*,† Lihong Qin,† Wenjun Zhang,*,† Christine V. Putnis,‡,§
8	and Andrew Putnis ^{‡,¶}
9	
10	
11	[†] College of Resources and Environment, Huazhong Agricultural University, Wuhan
12	430070, China
13	[‡] Institut für Mineralogie, University of Münster, 48149 Münster, Germany
14	§Department of Chemistry, ¶The Institute for Geoscience Research (TIGeR),
15	Curtin University, Perth, Western Australia 6845, Australia
16	
17	
18	
19	SI TABLES (S1-S6)
20	SI FIGURES (S1-S9)
21	
22	
23	
24	
25 26	
20	

Table S1. Aqueous conditions used in CdCl₂ solutions.

	<u> </u>		
рН	[CdCl ₂]	[Na ₂ HAsO ₄]	[NaCl]
	(μM)	(μM)	(mM)
5.5-6.0	0	0	0
4.0	5	0	0
6.0	5	0	0
	50	0	0
	500	0	0
8.0	5	0	0

Table S2. Aqueous conditions used in Na₂HAsO₄ solutions.

рН	[CdCl ₂]	[Na ₂ HAsO ₄]	[NaCl]
	(μM)	(μM)	(mM)
4.0	0	50	0
6.0	0	50	0
8.0	0	5	0
	0	50	0
	0	500	0
10.0	0	50	0

Table S3. Aqueous conditions used in the presence of NaCl.

	[CdCl ₂]	[Na ₂ HAsO ₄]	[NaCl]
	(μM)	(μM)	(mM)
Cd	5	0	0.01
pН	5	0	0.1
6.0	5	0	1
	5	0	10
	5	0	100
As	0	50	0.01
pН	0	50	0.1
8.0	0	50	1
	0	50	10
	0	50	100

Table S4. Aqueous conditions used in the presence of both Cd and As.

pН	$[CdCl_2]$	[Na ₂ HAsO ₄]	[NaCl]
	(μM)	(μM)	(mM)
6.0	5	50	0
8.0	5	50	0

Table S5. Aqueous conditions used in TEM experiments.

рН	[CdCl ₂]	[Na ₂ HAsO ₄]	[NaCl]
	(μM)	(μM)	(mM)
6.0	500	0	0
8.0	0	500	0
8.0	5	50	0

Table S6. The speciation calculation in 500 μ M CdCl₂ solutions using the ECOSAT software.

рН	$[Cd(OH)_2](M)$	[CdO] (M)	CdCO ₃ (M)
4.0	0	0	0
4.5	0	0	0
5.0	0	0	0
5.5	0	0	0
6.0	0	0	0
6.0	0	0	0
6.5	0	0	1.3135×10^{-5}
7.0	0	0	4.5104×10^{-4}
7.5	0	0	4.9504×10^{-4}
8.0	0	0	4.9948×10^{-4}

Figure S1. Time sequence of AFM deflection images of brushite dissolved in the presence of 5 μ M CdCl₂ at (A) pH 4.0, (B) 8.0.

Figure S2. Time sequence of AFM deflection images of brushite dissolved in the presence of (A) 50 μ M and (B) 500 μ M CdCl₂ at pH 6.0.

Figure S3. Time sequence of AFM deflection images of brushite dissolved in the presence of $50 \, \mu M \, Na_2 HAsO_4$ at (A) pH 4.0, (B) 6.0 and (C) 10.0.

Figure S4. (A) Deepening velocities of etch pits formed at the brushite (010) surface in pure water at pH 4.0, 6.0, or 8.0. (B) Step retreat velocities of the $[102]_{Cc}$, $[101]_{Cc}$, $[10\overline{1}]_{Cc}$, $[\overline{1}00]_{Cc}$ in water at 4.0, 6.0, or 8.0, respectively. All the velocities are presented as mean value \pm SD.

Figure S5. Step retreat velocities of etch pits along the [101]Cc, [10 $\overline{1}$]Cc and [$\overline{1}$ 00]Cc directions in presence of (A) NaCl + 5 μ M CdCl₂ or NaCl + 50 μ M Na₂HAsO₄, (B) different concentration CdCl₂ at pH 6.0 or different concentration Na₂HAsO₄ at pH 8.0, showing that the velocities were changed by the additives. The step retreat velocities are presented as mean value \pm SD.

Figure S6. Time sequence of AFM deflection images of brushite dissolved in the presence of 5 μ M CdCl₂ + (A) 0.1 mM NaCl and (B) + 100 mM NaCl at pH 6.0.

Figure S7. Time sequence of AFM deflection images of brushite dissolved in the presence of (A) 5 μ M and (B) 500 μ M Na₂HAsO₄ at pH 8.0.

Figure S8. Time sequence of AFM deflection images of brushite dissolved in the presence of 5 μ M Na₂HAsO₄ + (A) 0.1 mM NaCl and (B) + 100 mM NaCl at pH 8.0.

Figure S9. The relative speciation distributions in (A) As and (B) Cd solutions.