Automated planning enables complex protocols
on liquid-handling robots

—Supporting Information—

Ellis Whitehead, Fabian Rudolf, Hans-Michael Kaltenbach, and Jorg Stelling*

Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute

of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland

E-mail: joerg.stelling@bsse.ethz.ch

More detailed documentation of Roboliq is available online:

e Source code:

https://git.bsse.ethz.ch/csb/roboliq

e User manual:

http://intra.csb.ethz.ch/roboliq/docs/manual

e Roboliq command reference:

http://intra.csb.ethz.ch/roboliq/docs/protocol/commands.html

e FEvoware command reference:

http://intra.csb.ethz.ch/roboliq/docs/protocol/evowareCommands.html

e Roboliq code for proof-of-principle applications:

https://git.bsse.ethz.ch/csb/roboliq/tree/master/examples

Optimization and automated parameter selection

Roboliq implements optimizations for labware transfers and pipetting procedures. Some
of these optimizations assume that the configuration file is well constructed, which is not
an easy task. Once such as configuration file is created, however, the optimizations usually
produce sensible defaults so that the user does not need to specify the transfer or pipetting
parameters manually.

Regarding labware transfers, the robot configuration file defines all valid single-step trans-
fers. A ”single-step transfer” consists of three pieces of data: the robot arm, the movement
method, and the pair of bench locations to move between. In order to move labware between
two arbitrary bench locations, Roboliq iteratively explores possible solutions. Specifically,
it first searches for a single-step solution; if none is feasible, two-step solutions are tested,
and so forth. Through this breadth-first search, feasible transfers of labware will always
involve the minimum number of steps. For our setup, all locations can be reached in three
or fewer steps, and Roboliq raises an error if it cannot find a solution with three steps. The
maximum number of steps can be set in the robot configuration file.

Roboliq optimizes pipetting procedures in three ways. First of all, Roboliq allows the
user to specify sterility requirements. For example, we can specify that the tips need to be
decontaminated before aspirating from a source that contains cells. One can also specify that
no rinsing is required between transfers of water aliquots to multiple wells, if the tips did not
touch any other liquids because all dispenses took place above the well. Secondly, Roboliq
supports configurable pipetting rules (which the user can override whenever necessary). The
rules can select tip size and other pipetting parameters based on well volume, aliquot volume,
and liquid contents. For example, the rules can specify different tip sizes for different aliquot
volumes and different dispense heights depending on whether the destination well is empty
or full. Finally, Roboliq takes advantage of multi-tip pipetters by performing as many

aspirations and dispenses in parallel as possible.

Table S1: Comparison of software systems for automation. Each row of the table represents an
important feature for general portable protocols, and the columns are some of the important soft-
ware systems discussed in the Introduction. Checkmarks indicate that a system supports the given
feature, and a tilde indicates partial support. The Antha column has question marks because the
feature support is still unclear. General Experiment Framework: the system can be used for general
experimental tasks, as opposed to being focused on a single type of protocol. Portable Protocols:
the system supports protocols that can be used in different labs. Low-Level Optimization: the
system allows users to tweak the low-level details of a protocol to optimize execution on a specific
platform. Ezecutable Framework: the system provides a means to execute its protocols. Software
Interface: the system is designed to interface smoothly with third-party software. Adaptable / Ex-
tensible: the system can be adapted to new labs and its command set can be extended in a portable
manner. Some automation systems are concerned with a single task, like j5 for optimizing DNA
assembly. Others, like BioCoder and EXACT?2, provide formal protocol specifications, but they do
not have an actual execution platform. Recent developments, like Antha, appear promising, but
their capabilities are not yet clear. PR-PR can be considered the reference platform for portable
programming of liquid handling robots. However, it has several short-comings that we wanted to
address: the protocol format is not really portable or flexible, it’s design hinders interfacing with
other software, and it is difficult to adapt and extend. Roboliq is our system, which we designed as
a general experiment framework that can handle portable protocols, but it is also flexible enough to
allow low-level optimization. It can execute the experiments, interface with third-party software,
and is designed for adaptation and extension. Roboliq ’s most significant difference to Autopro-
tocol is that it generates low-level, executable code, whereas Autoprotocol is a formal language
specifying a high-level protocol. In addition, (i) Roboliq allows more flexible parameter overrid-
ing for potential portability (Autoprotocol requires all specified parameters to be in the protocol
itself), (ii) it facilitates more low-level control, (iii) it allows for more powerful commands through
expansion of commands and loops, (iv) Roboliq supports more advanced variable substitution and
tidy data output, and (v) Autoprotocol does not provide any support for Al (automated planning),
so all that would need to go into the backend compiler, whereas Roboliq ’s main compiler contains
the Al so that the backend can be as simple as possible.

jo BioCoder EXACT2 Autoprotocol Antha PR-PR

General Experiment X X X X X
Framework

Portable Protocols X X X X ? -
Low-Level Optimization X ? -
Executable Framework X - ? X
Software Interface X X ?
Adaptable / Extensible X ? N

Table S2: List of Roboliq’s standard commands. For more details, see the the online documen-
tation at https://git.bsse.ethz.ch/csb/roboliq/protocol/commands.html.

Command Short description

absorbanceReader

measurePlate Measure the absorbance of a plate.

centrifuge

centrifuge?2 Centrifuge two plates.

insertPlates2 Insert up to two plates into the centrifuge.
data

forEachGroup Perform sub-steps for every grouping of rows in the active data table.
forEachRow Perform sub-steps for every row in the active data table.
equipment

_run Run the given equipment.

close Close the given equipment.

open Open the given equipment.

openSite Open an equipment site.

start Start the given equipment.

stop Stop the given equipment.
fluorescenceReader

measurePlate Measure the fluorescence of wells on a plate.
incubator

incubatePlates Incubate the given plates.

insertPlates Insert up to two plates into the incubator.

run Run the incubator with the given program
pipetter

_aspirate Aspirate liquids from sources into syringes.
_dispense Dispense liquids from sryinges into destinations.
_measureVolume Measure well volume using pipetter tips.

mix Mix liquids by aspirating and re-dispensing.
_pipette Pipette liquids from sources to destinations.
_punctureSeal Puncture the seal on a plate using pipetter tips.
_washTips Clean the pipetter tips by washing.

cleanTips Clean the pipetter tips.

measureVolume Measure well volume using pipetter tips.

mix Mix well contents by aspirating and re-dispensing.
pipette Pipette liquids from sources to destinations.
pipetteDilutionSeries Pipette a dilution series.

pipetteMixtures Pipette the given mixtures into the given destinations.
punctureSeal Puncture the seal on a plate using pipetter tips.
scale

weigh Weigh an object.

sealer

sealPlate Seal a plate.

Command Short description

shaker

run Run the shaker.

shakePlate Shake a plate.

system

_description Include the value as a description in the generated script.
_echo Include the value in the generated script for trouble-shooting.
call Call a template function.

description Include the value as a description in the generated script.
echo Include the value in the generated script for trouble-shooting.
if Conditionally execute steps depending on a conditional test.
repeat Repeat sub-steps a given number of times.

runtimeExitLoop Test at run-time whether to exit the current loop.
runtimeLoadVariables Load the runtime values into variables.

runtimeSteps Handle steps that require runtime variables.

timer

_sleep Sleep for a given duration using a specific timer.

_start Start the given timer.

_stop Stop the given timer.

_wait Wait until the given timer has reacher the given elapsed time.
doAndWait Start a timer, perform sub-steps, then wait till duration has elapsed.
sleep Sleep for a given duration.

start Start a timer.

stop Stop a running a timer.

wait Wait until the given timer has reacher the given elapsed time.
transporter

_moveLidFromContainerToSite
_moveLidFromSiteToContainer
_movePlate
doThenRestoreLocation
moveLidFromContainerToSite
moveLidFromSiteToContainer
movePlate

Transport a lid from a container to a destination site.
Transport a lid from an origin site to a labware container.
Transport a plate to a destination.

Perform steps, then return the given labwares to their prior locations.
Transport a lid from a container to a destination site.
Transport a lid from an origin site to a labware container.
Transport a plate to a destination.

Table S3: List of low-level commands for Tecan Evoware. For more details, see the the online

documentation at https://git.bsse.

ethz.ch/csb/roboliq/protocol/evowareCommands.html.

Command

Short description

evoware
_execute
_facts

_raw
_subroutine
_userPrompt
_variable

An Evoware Execute command

An Evoware FACTS command

An Evoware direct command

An Evoware ‘Subroutine’ command
An Evoware UserPrompt command
Set an Evoware variable

Table S4: Extended protocol structure. In order to support programming, Roboliq extends the
protocol structure with these fields that may contain JavaScript code. For more details, see the on-
line documentation at https://git.bsse.ethz.ch/csb/roboliq/manual/configuration.html.

Field

Description

predicates

an array of logical predicates used by the Automated
Planning algorithm. We use Warren Sack’s JSON im-
plementation for encoding logic® in combination with his
implementation of the SHOP2 algorithm for automated
planning?.

objectToPredicateConverters

a map from an object type to a function that produces
predicates to describe an object of that type for the Au-
tomated Planning algorithms.

commandHandlers a map from a command name to a function that handles
a command for a protocol step.
planHandlers a map from the name of a logical action to a function

that outputs the Roboliq command for that action.

mergeObjects(ol, 02):
result = empty object
keys = union of keys in ol and o2
for each key:
if ol[key| and o2[key| are in both objects:
result [key] = mergeObjects(ol[key], o02[key])
else if 02 has key:

result [key] = o02[key]
else:
result [key] = ol [key]

mergeProtocols(pl, p2):
result = mergeObjects(pl, p2)
result [’ predicates '] =
concatenate ’'predicates’ from pl and p2
result [’ taskPredicates '] =
concatenate ’taskPredicates’ from pl and p2

loadProtocol (url, params):
protocol = load url as JSON, YAML, or JavaScript with params
if protocol has ’requires’ key:
module = empty object
for each requirement in protocol.requires:
protocol2 = loadProtocol(requirement url, requirement params)
module = mergeObjects (module, protocol2)
protocol = mergeObjects(module, protocol)
remove ’'requires’ key from protocol
return protocol

Figure S1: Pseudocode for merging objects, merging protocols, and loading protocols. JSON data
consists of several types of values: basic values such as numbers and strings, arrays, and objects.
A JSON object is a collection of key/value pairs. mergeObjects inspects two objects, whereby the
fields of the second object have priority — if they both have a particular key whose values are also
objects, those values are recursively merged; otherwise if the second object has the key, take its
value; otherwise take the value from the first object. mergeProtocols differs from mergeObjects
merely by concatenating the arrays for predicates and taskPredicates, rather than just taking
the value from p2 if available. loadProtocol loads the given URL as a JSON object, a YAML
object, or a JavaScript function (to which it passes extra parameters if supplied). If the resulting
JavaScript object has a requires key, it will recursively load the required modules and merge
them.

expandProtocol (protocol):
objects = clone a copy of protocol.objects
expandStep (protocol , 7”7, objects);

expandStep (protocol , id, objects):
step = lookup step with id in protocol
if step has ’'command’ key:
predicates = protocol.predicates ++ objectPredicates (objects)
handler = protocol.commandHandlers[step .command]
result = handler(step, objects, predicates,
protocol.planHandlers)
protocol.cache[id] = result
protocol.errors[id] = result.errors
abort if there were errors
if result has ’expansion’ key:
merge result.expansion into step (mutates protocol too)
protocol.effects[id] = result.effects
for effect in result.effects:
merge effect into objects
for each substep in step:
substepld = id + .’ + substep index
expandStep (protocol , substepld, objects)

Figure S2: Pseudocode for expanding the steps of a protocol. expandProtocol() starts the
expansion process by cloning a mutable copy of the protocol’s objects and calling expandStep().
In expandStep(), we first check whether the current step contains a command. If so, the original
predicates are merged with the dynamic object predicates, the command handler is invoked, its
results are stored, and errors, expansions, and effects are handled. Finally, if the step has sub-steps,

each of them is expanded in turn.

objects:

balancePlate :
type: Plate
description: balance plate for centrifuge
model!: ourlab.model. plateModel_384_square
location!: ourlab.mario.site.P4

mixPlate:
type: Plate
model!: ourlab.model.plateModel_384_square
location!: ourlab.mario.site.P3

tubesl!:
type: Plate
description: GFP eppendorf tubes
model: ourlab.model.tubeHolderModel_1500ul
location: ourlab.mario.site.T3
troughl!:
type: Plate
description: trough for water/glycerol/salt mix
model: ourlab.model.troughModel_-100ml
location: ourlab.mario.site.R6
contents: [Infinity 1, saltwater]
sourcePlatel !:
type: Plate
description: buffer plate
model: ourlab.model. plateModel_96_dwp
location: ourlab.mario.site.P2

Figure S3: pH experiment specification: Labware. This protocol excerpt defines the labware used
in the pH experiment. The !-suffix indicates lab-specific values that were set to run the experiment
on our robot. Each labware has a type, description, model, and location. Note that Roboliq
does not have a separate type for troughs, so the troughs also have type ‘Plate’. The model and
location values are unique identifiers defined in configuration file for the available labware models
and bench locations. throughl has an additional property contents that specifies its initial liquid
contents; this is an array whose first element is the volume and second element is the liquid. In
this case, the volume is given as Infinity 1, but an exact value could be given instead.

saltwater: {type: Liquid, group: Buffers, wells troughl (C01 down to FO01)}
hepes_-850: {type: Liquid group: Buffers wells sourcePlatel (A0l down to DO1
hepes_-650: {type: Liquid group: Buffers wells sourcePlatel (A02 down to D02
pipes-775: {type: Liquid group: Buffers wells

s s !

,) !)

,) !)

» s !: sourcePlatel (A03 down to DO03)
pipes-575: {type: Liquid, group: Buffers, wells!: sourcePlatel (A0O4 down to DO04)

, , !)

s 5 !

s s !

> > !

mes_710: {type: Liquid group: Buffers wells sourcePlatel (A05 down to DO05
mes_510: {type: Liquid group: Buffers wells sourcePlatel (A06 down to DO06)
acetate_575: {type: Liquid group: Buffers wells sourcePlatel (A07 down to DOT)}
acetate_375: {type: Liquid group: Buffers wells sourcePlatel (A08 down to DO08)}
sfGFP: {type: Liquid, group: GFPs, description: wild type, wells!: tubesl(AO01)}

Figure S4: pH experiment specification: Liquids. This defines the ten liquids used in this paper:
salt water, buffers, and protein. They each have a type of Liquid, an optional group to help
organization then, and a wells property that specifies where the liquid sources should be. The
wells property has a !-suffix to indicate that it is lab-specific, because another lab could easily
choose to put the liquids somewhere else.

mixtures:
type: Variable
calculate:
"#createPipetteMixturelList":
replicates: 3
items:
- source: saltwater
volume: 40ul
- "#gradient":
- {sourcel:
- {sourcel:
- {sourcel: pipes_575,
- {sourcel: hepes_650,
sfGFP

source2:
source2:
source2:
source2:

acetate_375,
mes_510,

acetate_575,
mes_710,
pipes_775,
hepes_850,
- source:

volume: 5ul

clean: thorough

cleanBetweenSameSource: flush

program!: Roboliq_Water_Wet_1000_mix3x50ul

mixtureWells:
type: Variable
calculate:
"#createWellAssignments":
list: mixtures
wells: mixPlate(all row-jump (1))

volume:
volume:
volume:
volume:

30ul,
30ul,
30ul,
30ul,

count: 8, decimals: 1}
count: 7, decimals: 1}
count: 5, decimals: 1}
count: 5, decimals: 1}

Figure S5: pH experiment specification: Mixtures. Here we define two variables. mixtures is a
mixture matrix that is calculated by the createPipetteMixtureList () function. It specifies three
replicates per combination, where each mixture has 40 pL of salt water, 30 pL of one of four buffer
systems, and 5 pL of sfGFP. For the sfGFP component, further pipetting parameters are included
to guide cleaning and mixing. The mixtureWells variable assigns the wells that will be used for

mixing.
steps:
1:
description: Prepare the mixture plate with a range
1:
command: pipetter.pipetteMixtures

mixtures: mixtures
destinations: mixtureWells
clean: flush
cleanBegin: thorough
cleanBetweenSameSource :
cleanEnd: thorough

none

sealer .sealPlate

mixPlate

command :
object:

fluorescenceReader . measurePlate

mixPlate

command :
object:
program :
excitation: 488nm
emission: 510nm
programFile: ./ph.mdfx

of pH

levels

Figure S6: pH experiment specification: Steps. This is an excerpt of the step definitions that
doesn’t include the loop for repeated measurements.
second step seals the plate, and the third step measures absorbance (it uses the user-defined file

‘ph.mdfx‘ as a template for the measurements).

10

The first step pipettes the mixtures, the

References

1. Sack, W. A JavaScript-based HTN Planner. 2010; http://danm.ucsc.edu/~wsack/

Plan/abstract.html.

2. Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W.; Wu, D., and Yaman, F.
(2003) SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20,
379-404.

11

