
Automated planning enables complex protocols

on liquid-handling robots

—Supporting Information—

Ellis Whitehead, Fabian Rudolf, Hans-Michael Kaltenbach, and Jörg Stelling∗

Department of Biosystems Science and Engineering, ETH Zurich and SIB Swiss Institute

of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland

E-mail: joerg.stelling@bsse.ethz.ch

More detailed documentation of Roboliq is available online:

� Source code:

https://git.bsse.ethz.ch/csb/roboliq

� User manual:

http://intra.csb.ethz.ch/roboliq/docs/manual

� Roboliq command reference:

http://intra.csb.ethz.ch/roboliq/docs/protocol/commands.html

� Evoware command reference:

http://intra.csb.ethz.ch/roboliq/docs/protocol/evowareCommands.html

� Roboliq code for proof-of-principle applications:

https://git.bsse.ethz.ch/csb/roboliq/tree/master/examples

1



Optimization and automated parameter selection

Roboliq implements optimizations for labware transfers and pipetting procedures. Some

of these optimizations assume that the configuration file is well constructed, which is not

an easy task. Once such as configuration file is created, however, the optimizations usually

produce sensible defaults so that the user does not need to specify the transfer or pipetting

parameters manually.

Regarding labware transfers, the robot configuration file defines all valid single-step trans-

fers. A ”single-step transfer” consists of three pieces of data: the robot arm, the movement

method, and the pair of bench locations to move between. In order to move labware between

two arbitrary bench locations, Roboliq iteratively explores possible solutions. Specifically,

it first searches for a single-step solution; if none is feasible, two-step solutions are tested,

and so forth. Through this breadth-first search, feasible transfers of labware will always

involve the minimum number of steps. For our setup, all locations can be reached in three

or fewer steps, and Roboliq raises an error if it cannot find a solution with three steps. The

maximum number of steps can be set in the robot configuration file.

Roboliq optimizes pipetting procedures in three ways. First of all, Roboliq allows the

user to specify sterility requirements. For example, we can specify that the tips need to be

decontaminated before aspirating from a source that contains cells. One can also specify that

no rinsing is required between transfers of water aliquots to multiple wells, if the tips did not

touch any other liquids because all dispenses took place above the well. Secondly, Roboliq

supports configurable pipetting rules (which the user can override whenever necessary). The

rules can select tip size and other pipetting parameters based on well volume, aliquot volume,

and liquid contents. For example, the rules can specify different tip sizes for different aliquot

volumes and different dispense heights depending on whether the destination well is empty

or full. Finally, Roboliq takes advantage of multi-tip pipetters by performing as many

aspirations and dispenses in parallel as possible.

2



Table S1: Comparison of software systems for automation. Each row of the table represents an
important feature for general portable protocols, and the columns are some of the important soft-
ware systems discussed in the Introduction. Checkmarks indicate that a system supports the given
feature, and a tilde indicates partial support. The Antha column has question marks because the
feature support is still unclear. General Experiment Framework : the system can be used for general
experimental tasks, as opposed to being focused on a single type of protocol. Portable Protocols:
the system supports protocols that can be used in different labs. Low-Level Optimization: the
system allows users to tweak the low-level details of a protocol to optimize execution on a specific
platform. Executable Framework : the system provides a means to execute its protocols. Software
Interface: the system is designed to interface smoothly with third-party software. Adaptable / Ex-
tensible: the system can be adapted to new labs and its command set can be extended in a portable
manner. Some automation systems are concerned with a single task, like j5 for optimizing DNA
assembly. Others, like BioCoder and EXACT2, provide formal protocol specifications, but they do
not have an actual execution platform. Recent developments, like Antha, appear promising, but
their capabilities are not yet clear. PR-PR can be considered the reference platform for portable
programming of liquid handling robots. However, it has several short-comings that we wanted to
address: the protocol format is not really portable or flexible, it’s design hinders interfacing with
other software, and it is difficult to adapt and extend. Roboliq is our system, which we designed as
a general experiment framework that can handle portable protocols, but it is also flexible enough to
allow low-level optimization. It can execute the experiments, interface with third-party software,
and is designed for adaptation and extension. Roboliq ’s most significant difference to Autopro-
tocol is that it generates low-level, executable code, whereas Autoprotocol is a formal language
specifying a high-level protocol. In addition, (i) Roboliq allows more flexible parameter overrid-
ing for potential portability (Autoprotocol requires all specified parameters to be in the protocol
itself), (ii) it facilitates more low-level control, (iii) it allows for more powerful commands through
expansion of commands and loops, (iv) Roboliq supports more advanced variable substitution and
tidy data output, and (v) Autoprotocol does not provide any support for AI (automated planning),
so all that would need to go into the backend compiler, whereas Roboliq ’s main compiler contains
the AI so that the backend can be as simple as possible.

j5 BioCoderEXACT2Autoprotocol Antha PR-PR

General Experiment

Framework

X X X X X

Portable Protocols X X X X ? ˜

Low-Level Optimization X ? ˜

Executable Framework X ˜ ? X

Software Interface X X ?

Adaptable / Extensible X ? ˜

3



Table S2: List of Roboliq’s standard commands. For more details, see the the online documen-
tation at https://git.bsse.ethz.ch/csb/roboliq/protocol/commands.html.

Command Short description

absorbanceReader
measurePlate Measure the absorbance of a plate.

centrifuge
centrifuge2 Centrifuge two plates.
insertPlates2 Insert up to two plates into the centrifuge.

data
forEachGroup Perform sub-steps for every grouping of rows in the active data table.
forEachRow Perform sub-steps for every row in the active data table.

equipment
run Run the given equipment.
close Close the given equipment.
open Open the given equipment.
openSite Open an equipment site.
start Start the given equipment.
stop Stop the given equipment.

fluorescenceReader
measurePlate Measure the fluorescence of wells on a plate.

incubator
incubatePlates Incubate the given plates.
insertPlates Insert up to two plates into the incubator.
run Run the incubator with the given program

pipetter
aspirate Aspirate liquids from sources into syringes.
dispense Dispense liquids from sryinges into destinations.
measureVolume Measure well volume using pipetter tips.
mix Mix liquids by aspirating and re-dispensing.
pipette Pipette liquids from sources to destinations.
punctureSeal Puncture the seal on a plate using pipetter tips.
washTips Clean the pipetter tips by washing.
cleanTips Clean the pipetter tips.
measureVolume Measure well volume using pipetter tips.
mix Mix well contents by aspirating and re-dispensing.
pipette Pipette liquids from sources to destinations.
pipetteDilutionSeries Pipette a dilution series.
pipetteMixtures Pipette the given mixtures into the given destinations.
punctureSeal Puncture the seal on a plate using pipetter tips.

scale
weigh Weigh an object.

sealer
sealPlate Seal a plate.

4



Command Short description

shaker
run Run the shaker.
shakePlate Shake a plate.

system
description Include the value as a description in the generated script.
echo Include the value in the generated script for trouble-shooting.
call Call a template function.
description Include the value as a description in the generated script.
echo Include the value in the generated script for trouble-shooting.
if Conditionally execute steps depending on a conditional test.
repeat Repeat sub-steps a given number of times.
runtimeExitLoop Test at run-time whether to exit the current loop.
runtimeLoadVariables Load the runtime values into variables.
runtimeSteps Handle steps that require runtime variables.

timer
sleep Sleep for a given duration using a specific timer.
start Start the given timer.
stop Stop the given timer.
wait Wait until the given timer has reacher the given elapsed time.
doAndWait Start a timer, perform sub-steps, then wait till duration has elapsed.
sleep Sleep for a given duration.
start Start a timer.
stop Stop a running a timer.
wait Wait until the given timer has reacher the given elapsed time.

transporter
moveLidFromContainerToSite Transport a lid from a container to a destination site.
moveLidFromSiteToContainer Transport a lid from an origin site to a labware container.
movePlate Transport a plate to a destination.
doThenRestoreLocation Perform steps, then return the given labwares to their prior locations.
moveLidFromContainerToSite Transport a lid from a container to a destination site.
moveLidFromSiteToContainer Transport a lid from an origin site to a labware container.
movePlate Transport a plate to a destination.

5



Table S3: List of low-level commands for Tecan Evoware. For more details, see the the online
documentation at https://git.bsse.ethz.ch/csb/roboliq/protocol/evowareCommands.html.

Command Short description

evoware
execute An Evoware Execute command
facts An Evoware FACTS command
raw An Evoware direct command
subroutine An Evoware ‘Subroutine’ command
userPrompt An Evoware UserPrompt command
variable Set an Evoware variable

Table S4: Extended protocol structure. In order to support programming, Roboliq extends the
protocol structure with these fields that may contain JavaScript code. For more details, see the on-
line documentation at https://git.bsse.ethz.ch/csb/roboliq/manual/configuration.html.

Field Description
predicates an array of logical predicates used by the Automated

Planning algorithm. We use Warren Sack’s JSON im-
plementation for encoding logic1 in combination with his
implementation of the SHOP2 algorithm for automated
planning2.

objectToPredicateConverters a map from an object type to a function that produces
predicates to describe an object of that type for the Au-
tomated Planning algorithms.

commandHandlers a map from a command name to a function that handles
a command for a protocol step.

planHandlers a map from the name of a logical action to a function
that outputs the Roboliq command for that action.

6



mergeObjects ( o1 , o2 ) :
r e s u l t = empty ob j e c t
keys = union o f keys in o1 and o2
f o r each key :

i f o1 [ key ] and o2 [ key ] are in both o b j e c t s :
r e s u l t [ key ] = mergeObjects ( o1 [ key ] , o2 [ key ] )

e l s e i f o2 has key :
r e s u l t [ key ] = o2 [ key ]

e l s e :
r e s u l t [ key ] = o1 [ key ]

mergeProtoco ls ( p1 , p2 ) :
r e s u l t = mergeObjects ( p1 , p2 )
r e s u l t [ ’ p r ed i ca t e s ’ ] =

concatenate ’ p r ed i ca t e s ’ from p1 and p2
r e s u l t [ ’ t a skPred i ca te s ’ ] =

concatenate ’ ta skPred i ca te s ’ from p1 and p2

loadProtoco l ( ur l , params ) :
p ro to co l = load u r l as JSON, YAML, or JavaScr ipt with params
i f p ro to co l has ’ r equ i r e s ’ key :

module = empty ob j e c t
f o r each requirement in p ro to co l . r e q u i r e s :

p ro toco l 2 = loadProtoco l ( requirement ur l , requirement params )
module = mergeObjects ( module , p ro toco l 2 )

p ro to co l = mergeObjects ( module , p ro to co l )
remove ’ r equ i r e s ’ key from pro to co l

r e turn pro to co l

Figure S1: Pseudocode for merging objects, merging protocols, and loading protocols. JSON data
consists of several types of values: basic values such as numbers and strings, arrays, and objects.
A JSON object is a collection of key/value pairs. mergeObjects inspects two objects, whereby the
fields of the second object have priority – if they both have a particular key whose values are also
objects, those values are recursively merged; otherwise if the second object has the key, take its
value; otherwise take the value from the first object. mergeProtocols differs from mergeObjects

merely by concatenating the arrays for predicates and taskPredicates, rather than just taking
the value from p2 if available. loadProtocol loads the given URL as a JSON object, a YAML
object, or a JavaScript function (to which it passes extra parameters if supplied). If the resulting
JavaScript object has a requires key, it will recursively load the required modules and merge
them.

7



expandProtocol ( p ro to co l ) :
o b j e c t s = c lone a copy o f p ro to co l . o b j e c t s
expandStep ( protoco l , ”” , o b j e c t s ) ;

expandStep ( protoco l , id , o b j e c t s ) :
s t ep = lookup step with id in p ro to co l
i f s t ep has ’command ’ key :

p r e d i c a t e s = pro to co l . p r e d i c a t e s ++ o b j e c t P r e d i c a t e s ( o b j e c t s )
handler = pro to co l . commandHandlers [ s tep . command ]
r e s u l t = handler ( step , ob j ec t s , p r ed i ca t e s ,

p ro to co l . p lanHandlers )
p ro to co l . cache [ id ] = r e s u l t
p ro to co l . e r r o r s [ id ] = r e s u l t . e r r o r s
abort i f the r e were e r r o r s
i f r e s u l t has ’ expansion ’ key :

merge r e s u l t . expansion in to s tep ( mutates p ro to co l too )
p ro to co l . e f f e c t s [ id ] = r e s u l t . e f f e c t s
f o r e f f e c t in r e s u l t . e f f e c t s :

merge e f f e c t i n to o b j e c t s
f o r each substep in step :

substepId = id + ’ . ’ + substep index
expandStep ( protoco l , substepId , o b j e c t s )

Figure S2: Pseudocode for expanding the steps of a protocol. expandProtocol() starts the
expansion process by cloning a mutable copy of the protocol’s objects and calling expandStep().
In expandStep(), we first check whether the current step contains a command. If so, the original
predicates are merged with the dynamic object predicates, the command handler is invoked, its
results are stored, and errors, expansions, and effects are handled. Finally, if the step has sub-steps,
each of them is expanded in turn.

8



ob j e c t s :
ba lancePlate :

type : Plate
d e s c r i p t i o n : balance p l a t e f o r c e n t r i f u g e
model ! : our lab . model . p lateMode l 384 square
l o c a t i o n ! : our lab . mario . s i t e . P4

mixPlate :
type : Plate
model ! : our lab . model . p lateMode l 384 square
l o c a t i o n ! : our lab . mario . s i t e . P3

tubes1 ! :
type : Plate
d e s c r i p t i o n : GFP eppendorf tubes
model : our lab . model . tubeHolderModel 1500ul
l o c a t i o n : our lab . mario . s i t e .T3

trough1 ! :
type : Plate
d e s c r i p t i o n : trough f o r water / g l y c e r o l / s a l t mix
model : our lab . model . troughModel 100ml
l o c a t i o n : our lab . mario . s i t e .R6
contents : [ I n f i n i t y l , s a l twat e r ]

sourceP late1 ! :
type : Plate
d e s c r i p t i o n : bu f f e r p l a t e
model : our lab . model . plateModel 96 dwp
l o c a t i o n : our lab . mario . s i t e . P2

Figure S3: pH experiment specification: Labware. This protocol excerpt defines the labware used
in the pH experiment. The !-suffix indicates lab-specific values that were set to run the experiment
on our robot. Each labware has a type, description, model, and location. Note that Roboliq

does not have a separate type for troughs, so the troughs also have type ‘Plate‘. The model and
location values are unique identifiers defined in configuration file for the available labware models
and bench locations. through1 has an additional property contents that specifies its initial liquid
contents; this is an array whose first element is the volume and second element is the liquid. In
this case, the volume is given as Infinity l, but an exact value could be given instead.

s a l twat e r : { type : Liquid , group : Buf fer s , we l l s ! : trough1 (C01 down to F01)}
hepes 850 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A01 down to D01)}
hepes 650 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A02 down to D02)}
p ipe s 775 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A03 down to D03)}
p ipe s 575 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A04 down to D04)}
mes 710 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A05 down to D05)}
mes 510 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A06 down to D06)}
ace ta t e 575 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A07 down to D07)}
ace ta t e 375 : { type : Liquid , group : Buf fers , we l l s ! : sourceP late1 (A08 down to D08)}

sfGFP : { type : Liquid , group : GFPs , d e s c r i p t i o n : wi ld type , we l l s ! : tubes1 (A01)}

Figure S4: pH experiment specification: Liquids. This defines the ten liquids used in this paper:
salt water, buffers, and protein. They each have a type of Liquid, an optional group to help
organization then, and a wells property that specifies where the liquid sources should be. The
wells property has a !-suffix to indicate that it is lab-specific, because another lab could easily
choose to put the liquids somewhere else.

9



mixtures:

type: Variable

calculate:

"# createPipetteMixtureList ":

replicates: 3

items:

- source: saltwater

volume: 40ul

- "# gradient ":

- {source1: acetate_375 , source2: acetate_575 , volume: 30ul , count: 8, decimals: 1}

- {source1: mes_510 , source2: mes_710 , volume: 30ul, count: 7, decimals: 1}

- {source1: pipes_575 , source2: pipes_775 , volume: 30ul, count: 5, decimals: 1}

- {source1: hepes_650 , source2: hepes_850 , volume: 30ul, count: 5, decimals: 1}

- source: sfGFP

volume: 5ul

clean: thorough

cleanBetweenSameSource: flush

program !: Roboliq_Water_Wet_1000_mix3x50ul

mixtureWells:

type: Variable

calculate:

"# createWellAssignments ":

list: mixtures

wells: mixPlate(all row -jump (1))

Figure S5: pH experiment specification: Mixtures. Here we define two variables. mixtures is a
mixture matrix that is calculated by the createPipetteMixtureList() function. It specifies three
replicates per combination, where each mixture has 40 µL of salt water, 30 µL of one of four buffer
systems, and 5 µL of sfGFP. For the sfGFP component, further pipetting parameters are included
to guide cleaning and mixing. The mixtureWells variable assigns the wells that will be used for
mixing.

s t ep s :
1 :

d e s c r i p t i o n : Prepare the mixture p l a t e with a range o f pH l e v e l s
1 :

command : p i p e t t e r . p ipet teMixtures
mixtures : mixtures
d e s t i n a t i o n s : mixtureWells
c l ean : f l u s h
c leanBegin : thorough
cleanBetweenSameSource : none
cleanEnd : thorough

2 :
command : s e a l e r . s e a lP l a t e
ob j e c t : mixPlate

3 :
command : f luo re s cenceReader . measurePlate
ob j e c t : mixPlate
program :

e x c i t a t i o n : 488nm
emiss ion : 510nm

programFile : . / ph . mdfx

Figure S6: pH experiment specification: Steps. This is an excerpt of the step definitions that
doesn’t include the loop for repeated measurements. The first step pipettes the mixtures, the
second step seals the plate, and the third step measures absorbance (it uses the user-defined file
‘ph.mdfx‘ as a template for the measurements).

10



References

1. Sack, W. A JavaScript-based HTN Planner. 2010; http://danm.ucsc.edu/~wsack/

Plan/abstract.html.

2. Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F.

(2003) SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20,

379–404.

11


