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Effect of solid surfaces on the first-passage time of polymers. As mentioned in the 

main text, the analysis of Cao, Likhtman and coworkers
30

 deals with the first-passage 

problem for Rouse chains in the bulk. For the present bridging problem where the 

polymer is bounded between solid surfaces representing colloidal particles, the first-

passage time to reach a given distance is affected by the repulsion of polymer beads from 

the surfaces. For polymer chains with one end fixed at the origin z=0, the presence of a 

solid surface at z=0 is expected to reduce the first-passage time, �� , due to restricted 

motion in the -z direction. Note that in our analysis, we do not consider the opposite 

surface placed at z = d and the associated repulsive potential since the internal beads 

rarely cross the location of that surface for the considered gaps larger than the polymer’s 

equilibrium length. To evaluate the effect of the solid surface on the first-passage time, 

we perform FFS simulations on polymer chains without end stickers in the bulk, and 

compare the first-passage time derived from these FFS simulations that lack the solid 
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surface with that obtained from FFS simulations in presence of the surface. Note that the 

starting conformation for the polymer chain in the bulk corresponds to both fixed and free 

ends at z=0 to resemble the loop conformation of the chain next to the surface. The first-

passage time normalized by the polymer relaxation time is shown in Figure S1 for a 

Rouse chain with �� � 100 Kuhn steps and � � 10 springs. We note that in the absence 

of the wall, the simulation result for � 	 1.5 is in very good agreement with Likhtman’s 

original expression
30

 for a one-dimensional Rouse chain in the bulk. However, adding the 

solid surface results in ~3-fold reduction in the first-passage time for all normalized gaps. 

We verified a similar scaling for polymers of different root-mean-square end-to-end 

distances and different number of springs. Therefore, an empirical factor 1/3 is 

introduced in Eqs. (14) and (17) to take into account the correction due to presence of the 

solid surface at z=0. 

 

 

Figure S1. The first-passage time for loop-to-bridge transition for 10-spring Rouse polymers 

without end stickers as a function of the normalized extension with and without the effect of the 

wall, compared with Likhtman’s original theory for those two cases, showing that the presence of 

the wall speeds the transition three-fold, consistent with corrected expression, Eq. (17). 
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Effect of excluded volume potential between polymer beads on the first-passage 

time. The excluded volume potential between the beads in a realistic polymer chain also 

influences the first-passage time. While an analytical expression such as the one given by 

Eq. (17) cannot be readily developed, BD simulations can be used for the range of chains 

lengths and extensions that are computationally accessible. As an example, we show in 

Figure S2 the effect of adding a 6-12 LJ potential with � � 1.3[��] and � � 1.3[���] to 

a Rouse chain with �� � 100  Kuhn steps and � � 10  springs. The parameters are 

selected so that the end-to-end distance distribution and radius of gyration match those of 

the PEO300 molecule at dry Martini level.
32

 We note from Figure S2(a) that the excluded 

volume interaction does not change the scaling of the first-passage time with normalized 

gap and produces only a modest deviation from the first passage time for the chain 

without the excluded volume interaction (Note that the relaxation time, �� , used for 

normalizing the result in both cases is the Rouse time without including the excluded 

volume effects). Renormalizing the first-passage times by ����3��/2�/� in Figure S2(b) 

better demonstrates the variation: the excluded volume potential between the beads 

reduces the first-passage for � 	 1.5  up to 40%, while the asymptotic behavior is 

preserved. This suggests that one could possibly use the generalized form given by Eq. 

(14) and fit the functions �����  and �����  for the Rouse chain including excluded 

volume effects. Such an expression would, however, depend on the particular shape of 

the added potential and selected well depth/range, which is generally a function of the 

molecular weight of the polymer.  
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Mapping the FJC model onto a Rouse chain. The loop-to-bridge transition time for the 

finer-grained representation of the polymer using the freely-jointed chain (FJC) model 

with �� � 100 Kuhn steps where each spring corresponds to a single Kuhn step was 

mapped onto that of a Rouse chain with similar root-mean-square end-to-end distance 

and � � 5 springs in the main text. This suggests that 100 constrained modes in the FJC 

model with �� � 100 is approximately equivalent to ��/20 � 5 effective Rouse modes. 

We checked the universality of this mapping for polymer chains of different lengths. The 

first-passage times normalized by ������3�
�/2�/�  are shown in Figure S3 for FJC 

polymers with two other lengths, namely �� � 50 and 150 Kuhn steps in comparison 

with those from Eq. (17) for Rouse chains with similar equilibrium length represented by 

different numbers of springs. We observe that at sufficiently large extensions where both 

FFS and theory are reliable, the freely-jointed representation approaches the Rouse chain 

prediction with �  ��/20 � 2.5 and 7.5, respectively. Note that for longer polymer 

 

Figure S2. The effect of excluded volume potential between the beads using a 6-12 LJ excluded 

volume potential with " � #. $[%&] and ' � #. $[()*] on first-passage time for loop-to-bridge 

transition for 10-spring Rouse chains without end stickers as a function of the normalized gap 

between the surfaces, in comparison with the theoretical expression given by Eq. (17). 
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chains, the asymptotic region where excellent agreement is obtained between the Rouse 

theory and FFS data for FJC shifts to larger normalized gaps. Moreover, for short 

polymers with �� + 20 , the considered range of normalized extensions 1.5 + � + 4 

corresponds to the chain approaching its fully-extended length, so that the mapping onto 

a Rouse model breaks down. Such short polymers are, however, irrelevant in most 

practical applications, so that using Eqs. (17, 19) with � � ��/20 is expected to give a 

reasonable estimate of the loop-to-bridge transition time for realistic polymer chains 

between colloids/surfaces. 

Relaxation time of model chain. From the Rouse model, the longest stress relaxation 

time (which is twice the Rouse rotational relaxation time �� discussed in the main text)   

of a multiple-bead chain is ��-./0 �
1[2]3425

6789:;<
, where ηs=8.90×10

-3
 dyn·s/cm

3
 is the 

solvent viscosity taken to be that of water at 25ºC; Mw is the polymer molecular weight; 

 

Figure S3. Universality of the FJC-to-Rouse mapping for different polymer chain lengths: the first-

passage time for loop-to-bridge transition renormalized by =>?@A�$B
C/C�/B as a function of the 

normalized gap for polymer chains with no sticker represented by different numbers of Hookean 

(i.e., Rouse) springs in comparison with a freely-jointed chain (FJC) model of similar equilibrium 

length for (a) D& � EF, and (b) D& � #EF Kuhn steps. The symbols are from FFS simulations and 

the solid lines are predictions of Eq. (17) for different numbers of springs. 
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NA is Avogadro’s number; and [G] � HIJ
K  is the intrinsic viscosity of the polymer, 

controlled by two empirical constants, which for polyethylene oxide (PEO) are K = 

0.00875 cm
3
/g and ν = 0.79.

S1
 For PEO, a Kuhn segment contains roughly 3 monomers 

comprising a molecular weight of 137g/mol.
S2

 A PEO chain with �� � 100 Kuhn steps, 

therefore corresponds to a molecular weight Mw of 13,700. From these, we get ��-./0= 

48.5 ns.  

On the other hand, considering a model Rouse chain with �� Kuhn steps at the dumbbell 

level, the stress relaxation time can be expressed as LM/4N, where LM is the bead friction 

coefficient and N � 3[���]/���[��]
��  is the spring constant. With LM � 100[O]/[P] 

and the energy, mass, and length scales set to unity in LAMMPS units, and eliminating 

the unit of mass [m] using [m] = [��T][P]
�/[��]

�, the relaxation time of a simulated 

chain with �� � 100 Kuhn steps is obtained as �10R/12�[P] = 833.3[P]. Equating this to 

the experimental relaxation time ��-./0= 48.5 ns yields a unit time of [P] � 58.2 ps for 

this sample chain corresponding to a molecular weight Mw of 13,700. 

 

Thermodynamics of bridge-loop equilibrium. Apart from the dynamics of loop-to-

bridge and bridge-to-loop formation, we also evaluate the fraction of each species at 

equilibrium. Direct BD simulations are performed on Rouse chains with �� � 100 Kuhn 

steps and �� � 1 represented by different numbers of springs. The polymer chains have 

end stickers with adsorption free energy � � 8[���], and all other simulation parameters 

are as specified in the main text. A dilute solution of polymers is placed between solid 

surfaces at different gaps and the fraction of bridging species at equilibrium is calculated. 

The simulation result is compared with Bhatia and Russel’s theoretical analysis for 
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telechelic associative polymers between flat plates.
S3

 Note that in their theory, there is a 

missing integral in Eqs. (14) so that the normalized segment density of the chains starting 

on the right wall and ending on the left wall is not accounted for using mirror subchain 

expressions to those in their Eq. (14b). A consequence of this error is that a bridge 

fraction of 1/3 is obtained at equilibrium rather than 1/2, which is not reasonable noting 

that with negligible stretching energy at small gaps, each end sticker would have equal 

probability of being on surface A or surface B. As such, the two stickers would have a 

probability of 1/4 to be both located on surface A, a probability of 1/4 to be both located 

on surface B, and a combined probability of 1/2 to be located on opposite surfaces 

yielding a bridge. We thus correct their theory by accounting for the missing integral in 

segment density expressions, which recovers the expected equilibrium distribution of half 

bridges and half loops at small gaps. Our BD simulation result is compared with the 

original and corrected theoretical solution in Figure S4. Note that the bridge fraction at 

close separations approaches 1/2 irrespective of the number of springs used in polymer 

chain representation, which is consistent with the corrected theory. At larger gaps, the 

agreement with theory improves with increasing numbers of springs up to 20, as the 

refinement in the discrete Rouse chain allows better representation of a continuous 

Gaussian chain. The agreement observed in the equilibrium distribution of species 

between our simulations and the available theoretical solution at multiple gaps is another 

step towards validating the methodology employed here for modeling the polymer-

colloid system.  

Furthermore, both the theory and BD simulations suggest that the fraction of bridges 

drops below 5% when the normalized gap becomes larger than 2, and since the fraction 



8 

 

decays exponentially with normalized gap, it should be less than 2% for dimensionless 

gaps of 3 or more. Note that we are normalizing the gap T with the root-mean-square 

end-to-end distance of the polymer chain, ��
�/�
�� , to be consistent with the notation 

given for � in the main text. With �� � 100 and �� � 1, the extension beyond which the 

bridge fraction is less than 2% corresponds to 30% of the fully-extended chain length, 

����. We verified that such a limit holds for polymer chains of different length, so our 

rate analysis would be relevant for such relatively low extensions where a reasonable 

portion of polymer species form bridges between the surfaces at equilibrium. As 

discussed in the text, for higher sticker energies, our analysis should be valid for even 

larger chain extensions, where the bridge fraction is even smaller than 2%.   
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Figure S4. Equilibrium fraction of bridging species in a dilute solution of polymers as a function of 

the gap between solid surfaces normalized by root-mean-square end-to-end distance. The symbols 

are from direct BD simulations, where the polymer is represented as a Rouse chain comprised of 1, 

5, 10, and 20 springs, and the two end beads stick to the surfaces with an adsorption energy of 

' � U[()*]. The dashed line is the prediction of Bhatia and Russel’s original theory, including the 

error, and the solid line corresponds to this theory corrected by including the missing integral. 
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