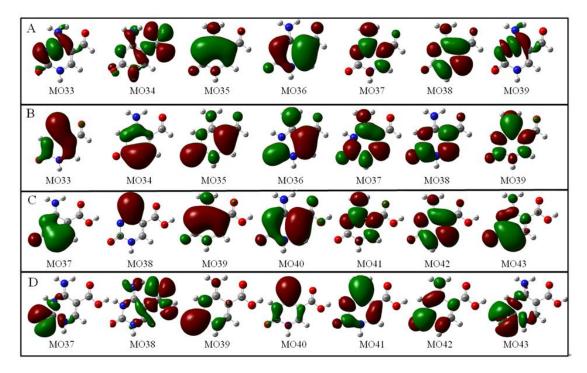
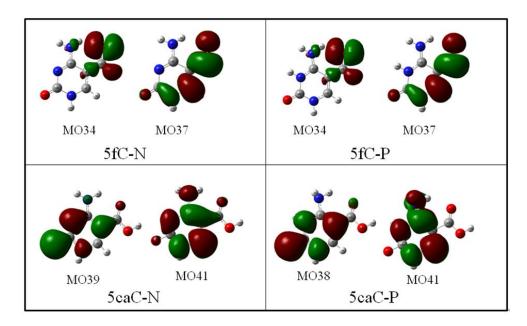
Supporting Information of "Theoretical Studies on the Photophysics and Photochemistry of 5-Formylcytosine and 5-Carboxylcytosine: The Oxidative Products of Epigenetic Modification of Cytosine in DNA"

Jinlu Xing,^{†,‡} Yuejie Ai,^{*,†} Yang Liu,[†] Jia Du,[‡] Weiqiang Chen,^{†,‡} Zhanhui Lu,^{*,‡} and Xiangke Wang^{*,†,§,//}


[†]College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China

[‡]School of Mathematics and Physical Science, North China Electric Power University, Beijing 102206, P. R. China


[§]NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

^{*dl*}Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, P. R. China

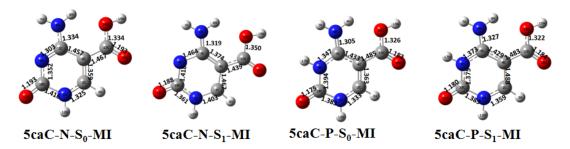

E-mail: aiyuejie@ncepu.edu.cn (Yuejie Ai), luzhanhuilu@163.com (Zhanhui Lu), xkwang@ncepu.edu.cn (Xiangke Wang)

Figure S1. The active orbitals of 5fC and 5caC at CAS(8,7)/6-31G(d) level. A: 5fC-N, B: 5fC-P, C: 5caC-N and D: 5caC-P.

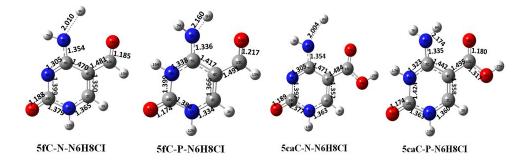

Figure S2. The transition molecular orbitals for S_1 states of 5fC and 5caC at CAS(8,7)/6-31G(d) level.

Figure S3. The structures of S_0 and S_1 states for intramolecular isomers of 5fC and 5caC at CAS(8,7)/6-31G(d) level. Bond lengths are in Å.

Table S1. The energies of S_0 and S_1 states of 5caC and the intramolecular heterogeneous states at CAS(8,7)/6-31G(d) level. Energies are in hartree.

	Neutral	Protonated
S ₀	-580.3114074	-580.699423
S ₁	-580.182135	-580.484875
S ₀ -MI	-580.240971	-580.6207141
S ₁ -MI	-580.1055007	-580.458269

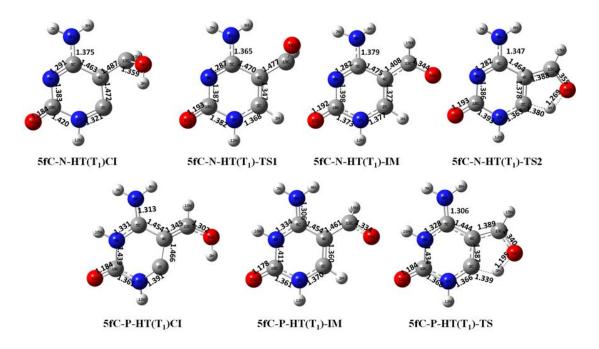


Figure S4. The optimized conical intersections of H8 atom dissociated from N6 of 5fC-N, 5fC-P, 5caC-N and 5caC-P. Bond lengths are in Å.

 Table S2. The single point energies of the conical intersections for hydrogen transfer in triplet

 state of 5fC-N and 5fC-P at CASPT2//CAS(14,10)/6-31G(d) level. Energies are in kcal/mol.

	Vacuum	
Structure	Relative Energy	
	(kcal/mol)	
5fC-N-N6H8CI	115.80	
5fC-P-N6H8CI	118.47	
5caC-N-N6H8CI	115.36	
5caC-P-N6H8CI	138.76	

Figure S5. The optimized structures of the conical intersections, intermediates and transition states for hydrogen transfer in triplet state of 5fC-N and 5fC-P at CAS(8,7)/6-31G(d) level. Bond lengths are in Å.

Table S3. The single point energies of the conical intersections, intermediates and transition states for hydrogen transfer in triplet state of 5fC-N and 5fC-P at CASPT2//CAS(14,10)/6-31G(d) level and CASPT2//CAS(14,10)/6-31G(d)/PCM level for vacuum and PCM model, respectively. Energies are in kcal/mol.

Structure	Vacuum Relative Energy (kcal/mol)	PCM Relative Energy (kcal/mol)
5fC-N-HT(T ₁)CI	118.33	114.26
$5fC-N-HT(T_1)-TS1$	92.91	81.77
5fC-N-HT(T ₁)-IM	82.09	71.53
$5fC-N-HT(T_1)-TS2$	114.20	100.36
5fC-P-HT(T ₁)CI	88.77	82.12
$5fC-P-HT(T_1)-IM$	78.03	72.35
5fC-P-HT(T ₁)-TS	107.39	104.99