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1 Atomic masses

The masses of the isotopes are:

m_H = 1.0078250 AMU

m_O = 15.994915 AMU

m_D = 2.0141018 AMU

2 Coordinates and basis set specification

The expansion of coordinates in the primitive internal coordinates set (q) are given together

with the exponent of the harmonic oscillator basis set (gam). 14 basis functions were used

for each coordinate in each calculation except for the VFCI analyses of the H3
+ systems,

where 25 basis functions were used.
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2.1 H2O

2.1.1 Primitive coordinates

q \ gam 30.000 30.000 20.000

r_OH 1.0000000000 0.0000000000 0.0000000000

r_OH 0.0000000000 1.0000000000 0.0000000000

a_HOH 0.0000000000 0.0000000000 1.0000000000

2.1.2 Optimized coordinates

q \ gam 30.000 30.000 20.000

r_OH 0.9900927428 -0.0098618967 -0.1400682108

r_OH -0.0099525530 0.9900928055 -0.1400613549

a_HOH 0.1400617984 0.1400677673 0.9801855504

2.2 HDO

2.2.1 Primitive coordinates

q \ gam 40.000 30.000 20.000

r_OD 1.0000000000 0.0000000000 0.0000000000

r_OH 0.0000000000 1.0000000000 0.0000000000

a_HOH 0.0000000000 0.0000000000 1.0000000000

2.2.2 Optimized coordinates

q \ gam 40.000 30.000 20.000

r_OD 0.9910721717 -0.0487587011 -0.1240908521
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r_OH 0.0258057192 0.9832810753 -0.1802564611

a_HOH 0.1308052574 0.1754449086 0.9757607641

2.3 H2D
+

2.3.1 Primitive coordinates

q \ gam 20.000 20.000 45.000

r_DH 1.0000000000 0.0000000000 0.0000000000

r_DH 0.0000000000 1.0000000000 0.0000000000

a_HDH 0.0000000000 0.0000000000 1.0000000000

2.3.2 Optimized coordinates

q \ gam 20.000 20.000 45.000

r_DH 0.6399162200 -0.7071053400 0.3008475700

r_DH 0.6399132000 0.7071082200 0.3008472400

a_HDH -0.4254624800 -0.0000007000 0.9049760700

2.4 D2H
+

2.4.1 Primitive coordinates

q \ gam 20.000 20.000 45.000

r_HD 1.0000000000 0.0000000000 0.0000000000

r_HD 0.0000000000 1.0000000000 0.0000000000

a_DHD 0.0000000000 0.0000000000 1.0000000000
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2.4.2 Optimized coordinates

q \ gam 20.000 20.000 45.000

r_HD 0.6371995572 -0.7071036502 0.3065634553

r_HD 0.6371936679 0.7071099121 0.3065612528

a_DHD -0.4335446388 -0.0000004020 0.9011320914

3 Verification of the parameter space

Dependence of the energy for the ν1 state (in cm−1 ) with ∆τ = 0.5 a.u. on the parameters

used for the orthogonalization correction, λk, and tolerance, tol, on |ψ(~x)| (see Eq. 7 of the

main text and the accompanying discussion). Values used in the present work are λk = 0.6

and tol=10−5. Data has been collected as described in the main text. The ν1 state of D2H
+

was chosen for the following analysis as the trial oc-VCI(1) states used for orthogonalization,

i.e. ground state, ν3, and ν2, significantly deviate from the exact states, as judged by their

variational energies.

λk = 0.6 tol=10−5 λk = 0.8 tol=10−5 λk = 0.4 tol=10−5 λk = 0.6 tol=10−6

6340.1 ± 0.4 6340.4 ± 0.5 6340.3 ± 0.5 6340.6 ± 0.5

Dependence of the energy for the ν1 state (in cm−1 ) with ∆τ = 0.5 a.u., λk = 0.6, and

tol=10−5 on the number of walkers (finite population bias). The error bars for 2500 walkers

were computed from 40 independent runs.

5000 walkers 2500 walkers
6340.1 ± 0.4 6341.0 ± 0.5

4 Details of the algorithm

Here, details of implementation are provided.
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Steps performed during simulation:

1. Initialize population:

• ground state: assign equilibrium configuration to walkers

• excited states: randomly displace atoms until required number of negative and

positive walkers is collected

2. Propagate in imaginary time:

• modify configurations according to Eq. 3

• apply reweighing of Eq. 10 if desired

• excited states: eliminate walkers that attempted to cross nodal surface

• excited states: apply orthogonalization correction according to Eq. 7

• account for branching term according to Eq. 4

• compute average energy and the energy offset E(τ)

• perform population control eliminating walkers with small absolute weights

• collect data if equilibration time has passed

Evaluation of wave function, local energy and quantum force:

• Wavefunction: the VSCF wavefunction is defined as in Eq. 1 and Eq. 2 of Ref. 1

• Hamiltonian Ĥ = T̂ + V̂ :

– potential energy term V̂ : black–box routine returning electronic energy given

Cartesian coordinates of atoms

– kinetic energy term T̂ : Cartesian coordinate operator (Eq. 8 of Ref. 1) but due

to translational invariance of the trial state, T̂ψ(~x), is implementation follows Eq.

11 of Ref. 1
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– wavefunction gradient is evaluated directly and involves nothing else other than

quantities needed to evaluate Eq. 11 of Ref. 1

• To evaluate ĤψT (~x)
ψT (~x)

and ∇iψT (~x)
ψT (~x)

in a numerically stable way, whenever norm of wave-

function falls below 10−40, Eq. 8 and Eq. 9 from main text were enforced.

We note in passing that unlike Coulomb potentials, the potentials used in the present work

are sufficiently smooth to avoid serious numerical issues. On the other hand, evaluation of

internal–coordinate gradients may be problematic at extreme configurations. In the present

work (low energy excitations), such configurations were unlikely to be sampled.
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