Supporting Information

Formation of Anisotropic Liquid Crystalline Nanoparticles via Polymerization Induced Hierarchical Self-Assembly

Song Guan,^{†, §} Chen Zhang,[†] Wei Wen,[†] Ting Qu,[†] Xiaoxiong Zheng,[†] Yongbin Zhao,[‡] and Aihua Chen^{*,†,§}

[†]School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
[‡]Shandong Oubo New Material Co Ltd, Shandong 257088, P. R. China
[§]Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China

Table of Contents

1.	Materials and methods	2
2.	Characterization	4
3.	Supporting figures and table	6
4.	References	15

1. Materials and methods

1.1 Materials

97%, acid dithiobenzoate (CPADB, Aladdin), 4-cyanopentanoic 4,4'-azobis(4-cyanovaleric acid) (ACVA, 98%. J&K Chemical), 1,1,3,3-tetramethylguanidine (TMG, 99%, Macklin), benzyl chloride (99%, Macklin), ethanol (99.8%, Aladdin), dimethyl sulfoxide (DMSO, 99.8%, Macklin), chlorobenzene (99%, Aladdin) were used as received. Methylacrylic acid (MAA, 99%, Aladdin) was purified by passing through a basic alumina oxide column prior to storage at -10 °C. The 11-[4-(4-butylphenylazo)phenoxy]undecyl methacrylate (MAAz) monomer was synthesized following the previously reported method.^[1]

1.2 Synthesis of PMAA macro-CTA via RAFT solution polymerization

In a typical RAFT solution polymerization for synthesis of PMAA₁₁₂ macro-CTA, MAA (10.32 g, 120 mmol), CPADB (0.28 g, 1.00 mmol), ACVA (56.1 mg, 0.20 mmol), and ethanol (10.32 g) were added to a reaction tube. The mixture was degassed by three freeze-pump-thaw cycles, and sealed under vacuum. The reaction tube was placed in an oil bath at 70 °C. After 5 h, the reaction was quenched by dipping the tube in ice/water and the tube was broken. The mixture was diluted with ethanol, precipitated in n-hexane 3 times. PMAA macro-CTA was purified via dialysis (MWCO 3 kg/mol) in ethanol for 3 days. Then dry under vacuum. The product was a pink solid (9.2 g, monomer conversion 89%). The DP was measured by 1 H NMR in DMSO-*d6* (DP=112).The M_{n} and M_{w}/M_{n} were measured by GPC (M_{n} =11.7 k, M_{w}/M_{n} =1.07).

1.3 Synthesis of PMAA-*b*-PMAAz block copolymer nanoparticles via RAFT dispersion polymerization

In a typical dispersion polymerization formulation targeting PMAA₁₁₂-*b*-PMAA_{z150} at 20% w/w solids, PMAA₁₁₂ macro-CTA (0.1 g, 0.010 mmol), ACVA (0.58 mg, 0.002 mmol), MAAz (0.77 g, 1.56 mmol) and ethanol (3.48

g) were added to a reaction tube. The mixture was degassed by three freeze-pump-thaw cycles, and sealed under vacuum. The reaction tube was placed in an oil bath at 70 °C. After 12 h, the reaction was quenched by dipping the tube in ice/water and the tube was broken. The resulting block copolymer was characterized by using ¹H NMR, DLS, AFM, SEM and TEM.

1.4 Chemical Modification of PMAA macro-CTA and PMAA-*b***-PMAAz block copolymer**

For GPC studies, the carboxylic acid groups on the PMAA macro-CTA and PMAA-*b*-PMAAz block copolymer were fully esterified using benzyl chloride with TMG as a promoter, as reported by Bai and coworkers.^[2] In a typical chemical modification of PMAA macro-CTA, PMAA (43 mg, 0.5 unit mmol) was dissolved in DMSO (1 mL). Then TMG (115 mg, 1 mmol) and benzyl chloride (95 mg, 0.75 mmol) were added. Then the mixture was stirred over night at room temperature. The resulting polymer was precipitated into a large amount of methanol, and collected by filtration and then drying under vacuum at 40 °C. The chemical modification of PMAA-*b*-PMAAz block copolymer is similar with PMAA macro-CTA except the 75/25% w/w CHCl₃/DMSO mixtures as the solvent.

1.5 Photo-responsive of the PMAA-b-PMAAz nanoparticles prepared by PISA

A small aliquot mixture after PISA was diluted 10 times using ethanol. The mixture was irradiated by 360 nm UV light (OMRON, ZUV-H20MC) 1 hour with stirring. Then, the mixture was stored in a dark bottle. The morphologies and sizes were characterized by using TEM and DLS.

2. Characterization

2.1 NMR spectroscopy. NMR spectra were measured on a Bruker DMX spectrometer, operating at 400 MHz for ¹H. The CPADB was characterized using CDCl₃ as the solvent. The PMAA macro-CTA were characterized using DMSO-*d6* as the solvent. The PMAA-*b*-PMAAz block copolymers were characterized using 75/25% w/w CDCl₃/DMSO-*d6* mixtures as the solvent to make sure the complete dissolution of the two blocks.

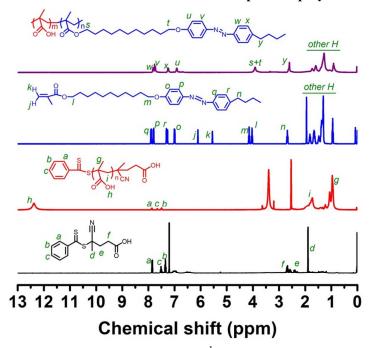
2.2 Gel permeation chromatography (GPC). The M_n and M_w/M_n ratios of polymers (have been fully esterified using benzyl chloride with TMG as a promoter) were performed on a Waters 2410 gel permeation chromatography (GPC) equipped with two columns (Styragel Column, HR 4, 5 μ m, 7.8 mm x 300 mm, 5-600 K and Styragel Column, HR 2, 5 μ m, 7.8 mm x 300 mm, 500-20 K).THF (HPLC) was used as the eluent with the flow rate of 1mL/min. Molecular weight was calibrated by a series of monodisperse polystyrene standards.

2.3 Transmission electron microscopy (TEM). One drop of the dispersions with proper concentration in ethanol was deposited on a carbon-coated copper grid. The solvent was evaporated at room temperature for 1-2 d.The TEM samples obtained were stained by RuO₄. TEM images were obtained with a JEM-2100 microscope, operating at 200 kV.

2.4 Scanning electron microscope (SEM). One drop of the dispersions with proper concentration in ethanol was deposited on a copper grid. The solvent was evaporated at room temperature for 1-2 d. The SEM samples were gilded before the observation. The SEM images were acquired using Hitachi S4800 field emission scanning electron microscope at 5 kV.

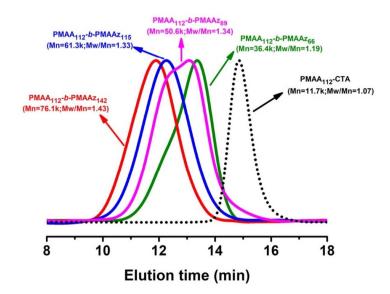
2.5 Atomic force microscopy (AFM). One drop of the dispersions with proper concentration in ethanol was deposited on a cleansed silicon wafer. The solvent was

evaporated at room temperature for 1-2 d. AFM height images were collect by using a Bruker Resolve probe microscope under tapping mode.


2.6 Dynamic light scattering (DLS). DLS measurements were conducted using a Shandong Naikete NKT-N9 instrument equipped with a 532 nm He-Ne laser at 25 °C. The hydrodynamic sizes of the nanoparticles in ethanol were characterized by analyzing the scattering light at 90° angle.

2.7 Differential scanning calorimetry (DSC). The mixture after PISA was volatilized 48 h in room temperature removing ethanol. Then, unreacted monomers and other impurities were removed by Soxhlet extraction 48 h in methanol. DSC analyses were measured using NETZSCH DSC214 instrument calibrated using indium standards. The DSC samples were scanned under air flow from 25 °C to 200 °C at a scanning rate 10 °C /min. The data of first cooling processes and second heating processes were recorded.

2.8 Small-angle x-ray scattering (SAXS). A small aliquot mixture after PISA volatilized 48 h in room temperature removing ethanol. Then grinded before measured. SAXS was measured using a Anton-Paar SAXS mc2 diffractometer with Cu K α radiation (λ =0.154 nm).


2.9 Temperature-dependent polarized optical microscopic (POM). A small aliquot mixture after PISA was dropped to the glass slide, volatilized 48 h in room temperature removing ethanol. POM experiments were done using Shang Guang 59XF microscope fitted with a Shang Guang XRD thermo-control system.

3. Supporting figures and table

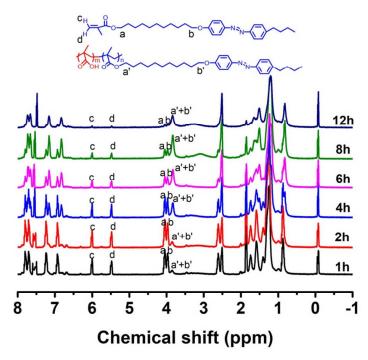
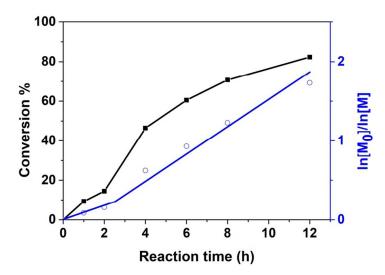

3.1 Synthesis of PMAA_m-b-PMAAz_n via RAFT dispersion polymerization

Figure S1. Chemical structures and typical ¹H NMR spectra of CPADB, PMAA macro-CTA, MAAz monomer and the PMAA-*b*-PMAAz block copolymer synthesized via RAFT dispersion polymerization.


Figure S2. GPC traces of the PMAA₁₁₂ macro-CTA and a series of corresponding $PMAA_{112}$ -*b*-PMAAz_n block copolymers (THF, polystyrene standards) synthesized via

RAFT dispersion polymerization at 20% w/w in ethanol at 70 °C. All of the polymers were fully esterified using benzyl chloride with TMG as a promoter.

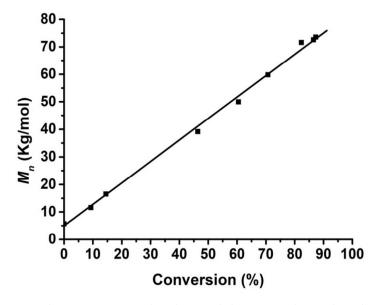


Figure S3. ¹H NMR spectra of the PMAA₇₅-*b*-PMAA_{zn} block copolymers with different polymerization time. Target block copolymer composition was PMAA₇₅-*b*-PMAA_{z150}. Conditions: [macro-CTA]/[AIBN] molar ratio= 5.0; total solids concentration = 20% w/w.

The peaks a, b, c, d and a', b' are selected as representative peaks. The areas of a, b, c, d is getting smaller with increasing of the polymerization time. Reversely, the areas of a' + b' are getting larger with increasing of the polymerization time. It indicates that the MAAz monomers are polymerized effectively in this condition.

Figure S4. Monomer conversion-time plot and the corresponding semilogarithmic plot for the RAFT dispersion polymerization of MAAz. Target block copolymer composition is $PMAA_{75}$ -*b*-PMAAz₁₅₀. Conditions: [macro-CTA]/[AIBN] molar ratio= 5.0; total solids concentration = 20% w/w; reaction temperature=70 °C.

Figure S5. Number-average molecular weight-conversion plot for the RAFT dispersion polymerization of MAAz. Target block copolymer composition is $PMAA_{75}$ -*b*-PMAAz₁₅₀. Conditions: [macro-CTA]/[AIBN] molar ratio= 5.0; total solids concentration = 20% w/w; Reaction temperature=70 °C.

	DP of PMAA b	DP of PMAAz c	Mn ^c (g/mol)	Mass fraction of PMAAz (%) ^d	GPC			DLS ^f	
Sample					<i>M</i> n	<i>M_w/M</i> n	Morphology ^e	Diam (nm)	PDI
1	112	66	42100	77	36400	1.19	cuboid	108	0.188
2	112	89	53400	82	50600	1.34	short belt	186	0.217
3	112	115	66200	85	61300	1.33	lamella	297	0.366
4	112	142	79500	88	76100	1.43	ellipsoidal vesicle	335	0.130
5	75	48	30100	78	29300	1.21	cuboid	111	0.212
6	75	65	38400	83	34900	1.20	short belt	248	0.289
7	75	84	47800	86	43600	1.42	lamella	393	0.375
8	75	123	67000	90	54500	1.49	vesicle	876	0.685
9	38	15	10600	70	11300	1.16	worm + Iamella	243	0.484
10	38	18	12100	73	13100	1.20	worm + Iamella	254	0.571
11	38	32	19000	83	17800	1.35	vesicle	395	0.166
12	38	44	25000	87	23900	1.32	vesicle	411	0.231
13	176	75	52000	71	49500	1.21	sphere + worm	217	0.276
14	176	87	57900	74	58100	1.18	worm	231	0.192
15	176	134	81100	81	75800	1.28	worm	352	0.206
16	176	190	108600	86	109700	1.45	worm + Iamella	408	0.420
17	176	265	145500	90	138600	1.48	precipitate		

Table S1. Summary of DP, molecular weight, final morphology and particle size obtained from a series of PMAA-*b*-PMAAz block copolymers synthesized via RAFT dispersion polymerization at 70 °C in ethanol^a.

a) Conditions: [macro-CTA]/[ACVA] molar ratio = 5.0; total solids concentration = 20% w/w.

b) Determined by ¹H NMR spectroscopy in DMSO-*d6*.

- c) Determined by ¹H NMR spectroscopy in 75/25%w/w CDCl₃/DMSO-*d6* mixtures.
- d) LC weight fraction determined by ¹H NMR.
- e) The copolymer particle morphology is determined by TEM observations.
- f) Intensity-average diameters were calculated using a cumulants analysis software provided by the instrument manufacturer. PDI denotes the polydispersity.

3.2 Morphologies of different samples

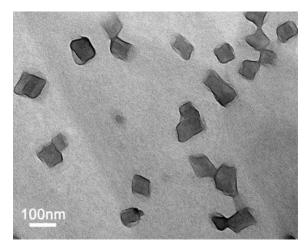
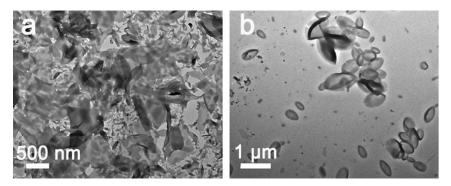
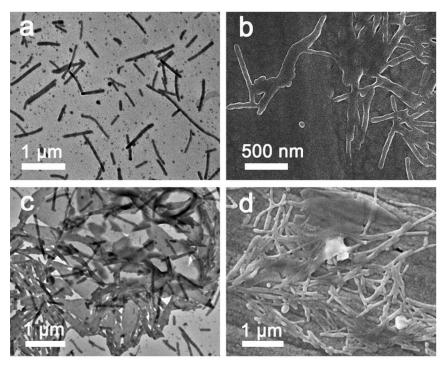




Figure S6. TEM enlarged image of the PMAA₇₅-*b*-PMAAz₄₈ nanoparticles.

Figure S7. TEM images of the a) PMAA₃₈-*b*-PMAAz₁₈, and b) PMAA₃₈-*b*-PMAAz₃₂ nanoparticles, showing a hybrid morphology of lamellae and worms, and a vesicle morphology, respectively.

Figure S8. TEM and the corresponding SEM images of the a-b) PMAA₁₇₆-*b*-PMAAz₁₃₄, and c-d) PMAA₁₇₆-*b*-PMAAz₁₉₀ nanoparticles, respectively.

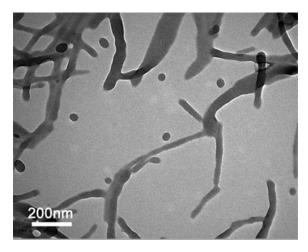
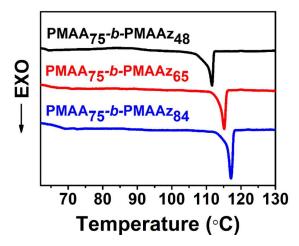
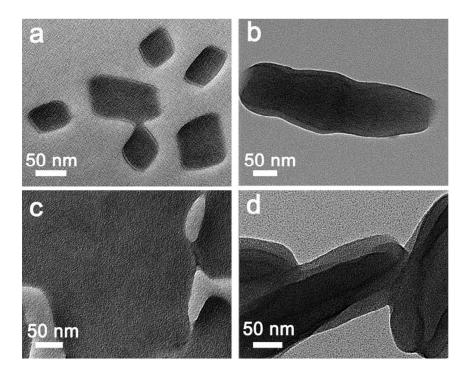




Figure S9. TEM image of the PMAA₁₇₆-*b*-PMAA₂₇₅ nanoparticles.

3.3 The mesomorphic properties of PMAA-b-PMAAz and nanoparticles

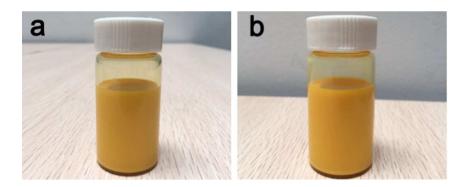


Figure S10. DSC curves of the PMAA₇₅-*b*-PMAA z_n block copolymers on the first cooling processes with a cooling rate of 10 °C/min.

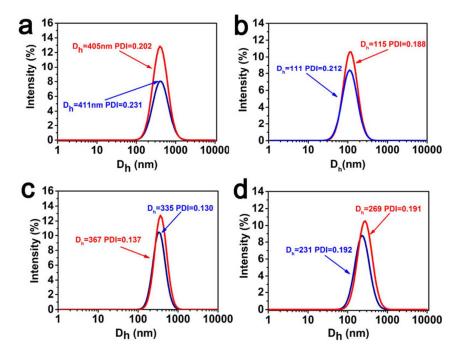


Figure S11. TEM magnified images of the PMAA₁₁₂-*b*-PMAAz_n nanoparticles with various DP_{PMAAz} : a) PMAA₁₁₂-*b*-PMAAz₆₆, b) PMAA₁₁₂-*b*-PMAAz₈₉, c) PMAA₁₁₂-*b*-PMAAz₁₁₅, and d) PMAA₁₁₂-*b*-PMAAz₁₄₂. Smectic stripes can be observed in all images.

3.4 The stabilization of PMAA-b-PMAAz nanoparticles via PISA

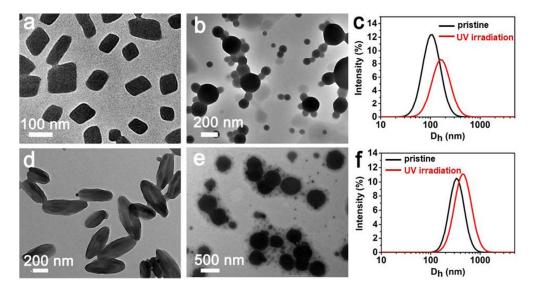


Figure S12. The photographs of the $PMAA_{112}$ -*b*- $PMAAz_{142}$ nanoparticles: a) as-prepared b) after three months at room temperature.

Figure S13. Typical Intensity-average size distributions (blue: as-prepared, red: after three months at room temperature) of the a) PMAA₃₈-PMAAz₄₄, b) PMAA₇₅-PMAAz₄₈, c) PMAA₁₁₂-PMAAz₁₄₂, and d) PMAA₁₇₆-PMAAz₈₇, respectively.

3.5 Photo-responsive of the PMAA-*b*-PMAAz solution and the nanoparticles prepared by PISA

Figure S14. TEM images of the PMAA₁₁₂-*b*-PMAAz_n nanoparticles at different conditions: a) and d) pristine, b) and e) after UV irradiation. c) and f) The respective corresponding particle size and distribution obtained from the DLS measurements. For a-c), PMAA₁₁₂-*b*-PMAAz₆₆, and for d~f), PMAA₁₁₂-*b*-PMAAz₁₄₂, respectively.

4. References

- [1] Y. Tian, K. Watanabe, X. Kong, J. Abe, T. Iyoda, Macromolecules 2002, 35, 3739-3747.
- [2] Q. Li, Y. Bao, H. Wang, F. Du, Q. Li, B. Jin, R. Bai, Polym. Chem. 2013, 4, 2891-2897.