Supporting information

Integrated CO₂ Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases

Sung Min Kim,[†] Paula M. Abdala,[†] Marcin Broda,[†] Davood Hosseini,[†] Christophe Copéret,[‡] and Christoph Müller^{*,†}

⁺Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland [‡]Department of Chemistry and Applied Sciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093 Zürich, Switzerland

correspondence to: muelchri@ethz.ch (Prof. Christoph Müller)

Content

Supplement	ary Text
Table S1.	Physicochemical properties of reacted Ni/MgO-Al_2O_3 DRM catalyst4
Figures	
Figure S1.	Schematic diagram of a conventional calcium looping based CO ₂ capture process
Figure S2.	Schematic diagram of the fluidized bed setup
Figure S3.	H ₂ -TPR profile of Ni/MgO-Al ₂ O ₃ 6
Figure S4.	Characterization of the reacted DRM catalyst: (a) X-ray powder diffraction patterns: (\triangle) periclase (MgO), (\bigcirc) Ni, and (×) graphite. (b) Raman spectra and TEM of the reacted DRM catalyst after (c) the 1st and (d) the 10th cycle
Figure S5.	(a) CH_4 and CO_2 conversion and (b) yield of H_2 and CO , and H_2/CO ratio in the pre-breakthrough stage as a function of the cycle number
Figure S6.	Molar flow rate of H_2 and CO during CO ₂ conversion (DRM) and subsequent CO ₂ capture at different cycle numbers: () 1^{st} , () 5^{th} and (- · -) 10^{th} cycle 8
Figure S7.	Characterization of the reacted CO ₂ sorbent: HR-SEM images of (a) reacted limestone after the 10 th cycle (calcined form), and (b) BJH pore size distribution of the freshly calcined and reacted limestone
Figure S8.	(a) CO_2 release profile for 3 g of limestone at 900 °C and (b) regeneration of limestone coupled with DRM reaction at 900 °C.
Figure S9.	N_2 physisorption isotherms of calcined limestone and reduced Ni/MgO-Al_2O_3. 10 $$
References	

Supplementary Text

Material characterization

Due to the hygroscopic nature of the material, $Ca(OH)_2$ is also observed in the XRD patterns of the material after calcination (Figure2e). N₂ physisorption measurements (FigureS9) reveal that calcined limestone has a macro-porous morphology with a type III isotherm and H3 type hysteresis loop (IUPAC classification ¹), a BET surface area of 16 m²/g_{sorbent} and a BJH pore volume and pore diameter of 0.13 cm³/g_{sorbnet} and 38.2 nm, respectively.

Turning to the dry reforming catalyst, after reduction at 800 °C (the reduction temperature was determined by H₂-TPR experiments, FigureS₂), Ni/MgO-Al₂O₃ (Figure₂e) contains metallic nickel and periclase phases (MgO-Al₂O₃). The XRD data shows that the d(200) spacing of periclase in reduced DRM catalyst (2.093 Å) is smaller than that of the pure periclase reference, MgO, (2.102 Å), indicative that Al³⁺ cations are incorporated into the periclase structure ². N₂ physisorption measurements show a type IV isotherm and a H₂ type hysteresis loop, indicating a mesoporous morphology (BET surface area and BJH pore volume was equal to 163 m²/g_{catalyst} and 0.91 cm³/g_{catalyst}, respectively). Using H₂ chemisorption, a Ni surface area of 10.3 m²·g_{cat}⁻¹ is determined.

Cyclic CO₂ capture performance of limestone-derived CaO as determined in a TGA

To rationalize the cyclic CO_2 capture capacity measured in the fluidized bed (Figure4b), the cyclic CO_2 uptake of limestone-derived CaO is also evaluated in a TGA at 720 °C. Although there are appreciable difference between a TGA and a fluidized bed e.g. with regards to mass transfer characteristics, we find that CO_2 capacity of limestone-derived CaO as determined in a TGA is comparable to the results obtained in a fluidized bed. This observation indicates that for the given number of cycles, attrition is a minor contributor to the decreasing CO_2 uptake of limestone.

Regeneration of CaCO3 coupled with DRM at 900 °C

We tests the regeneration of CaCO₃ under pure CH₄ stream at 900 °C after CO₂ capture at 720 °C. 3 g of pre-calcined limestone is used to avoid complete calcination of CaCO₃ before reaching at 900 °C. The CO₂ molar fraction was reached to 0.49 under N₂ (0.2 L/min) at 900 °C, albeit very short (\approx 3 min) due to limited quantity of CaCO₃ (FigureS8a). The coupled CO₂ capture and conversion reactions at 900 °C using a mixture of 3.0 g limestone and 3.0 g Ni/MgO-Al₂O₃ is performed (FigureS8b) under pure CH₄ (0.2 L/min). H₂ mole fraction is prominently high due to CH₄ decomposition (t = 25 – 31 min), where CO₂ released from CaCO₃ is completely converted CO and CO mole fraction was gradually increased in accordance with CO₂ release profile of CaCO₃ depending on temperature. Only H₂ and CO with 1.04 of H₂/CO molar ratio is observed in pre-breakthrough at 900 °C (t = 30 – 33 min), indicative of full conversion of the CO₂ released

via the dry reforming of methane into a synthesis. In breakthrough, CO mole fraction is steadily reduced due to the quantity of CO_2 released decreased, whereas H_2 mole fraction is increased due to CH_4 decomposition. In the post-breakthrough stage (t > 35 min), the concentration of CH_4 increases due to catalyst poisoning by carbon deposition and the depletion of $CaCO_3$.

	H ₂ chemisorption	N₂ physisorption ^b		
Catalyst	Ni active siteª [µmol _{Ni} /g _{cat}]	S _{BET} [m²/g _{cat}]	V _p [cm³/gcat]	D _p [nm]
Freshly reduced	262	163	0.91	5.2
1 st post-breakthrough	10	142	0.75	5.9
2 nd carbonation	255	158	0.88	5.7
10 th carbonation	210	155	0.87	5.9
10 th post-breakthrough	8	133	0.72	5.9

Table S1. Physicochemical properties of reacted Ni/MgO-Al₂O₃ DRM catalyst

^a Ni active sites quantified by H_2 chemisorption using a stoichiometry factor of H/Ni = 1.0. ^bThe specific surface area, pore volume, and pore radius were calculated using BET and BJH models.

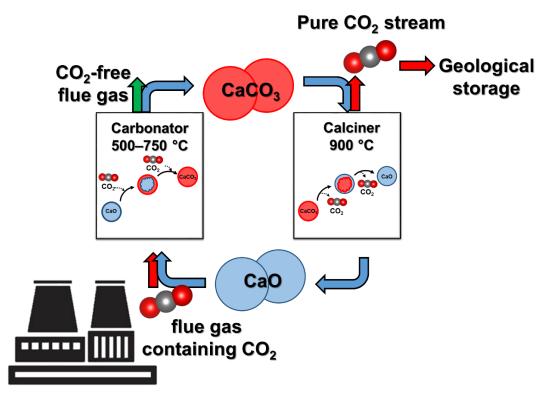


Figure S1. Schematic diagram of a conventional calcium looping based CO₂ capture process.

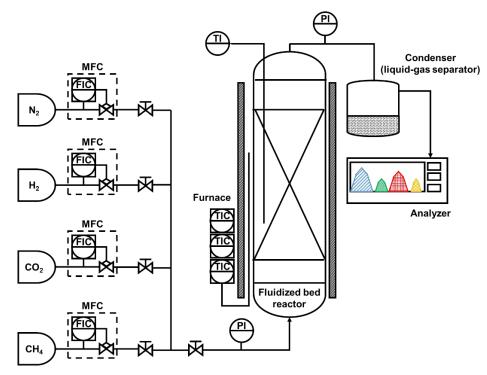
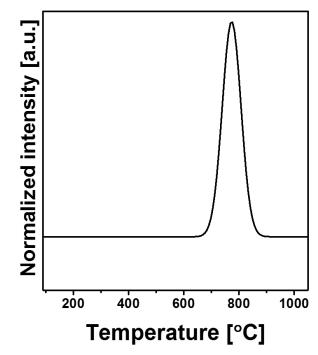
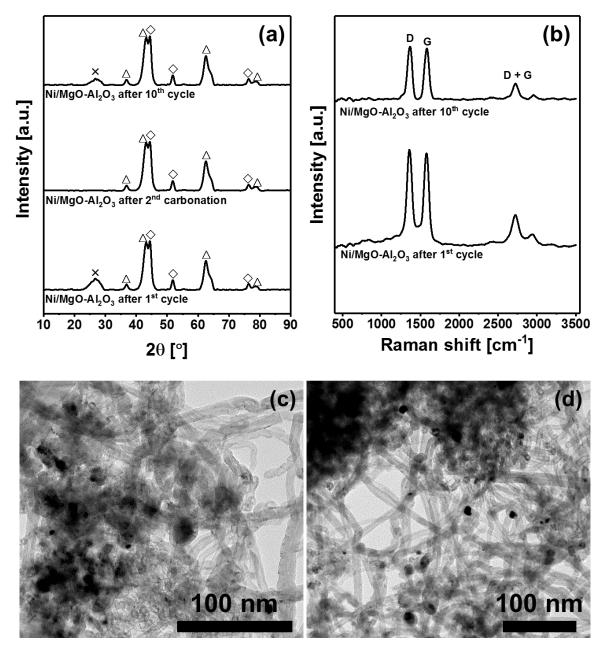
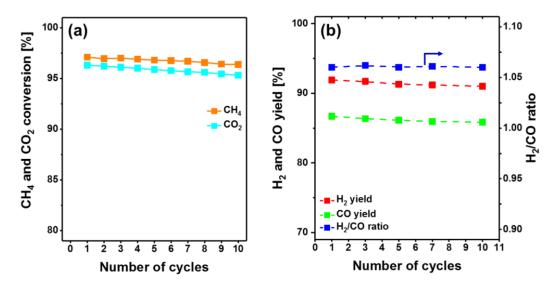
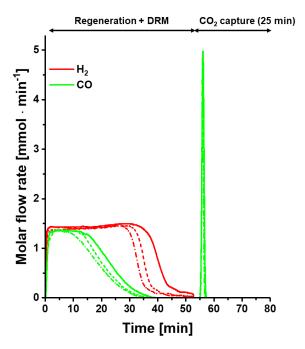
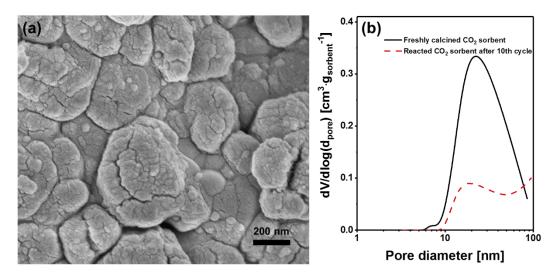
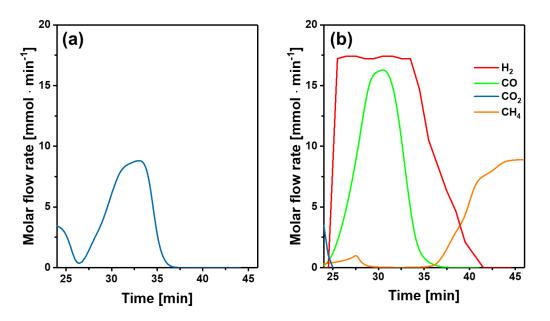



Figure S2. Schematic diagram of the fluidized bed setup.

Figure S3. H_2 -TPR profile of Ni/MgO-Al₂O₃


Figure S4. Characterization of the reacted DRM catalyst: (a) X-ray powder diffraction patterns: (△) periclase (MgO), (◇) Ni, and (×) graphite. (b) Raman spectra and TEM of the reacted DRM catalyst after (c) the 1st and (d) the 1oth cycle.


Figure S5. (a) CH_4 and CO_2 conversion and (b) yield of H_2 and CO, and H_2/CO ratio in the prebreakthrough stage as a function of the cycle number.

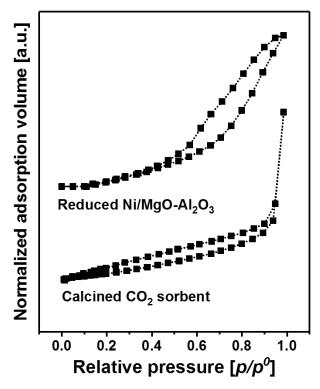

Figure S6. Molar flow rate of H_2 and CO during CO_2 conversion (DRM) and subsequent CO_2 capture at different cycle numbers: (----) 1^{st} , (---) 5^{th} and (---) 10^{th} cycle

Figure S7. Characterization of the reacted CO₂ sorbent: HR-SEM images of (a) reacted limestone after the 10th cycle (calcined form), and (b) BJH pore size distribution of the freshly calcined and reacted limestone.

Figure S8. (a) CO_2 release profile for 3 g of limestone at 900 °C and (b) regeneration of limestone coupled with DRM reaction at 900 °C.

Figure S9. N₂ physisorption isotherms of calcined limestone and reduced Ni/MgO-Al₂O₃.

References

- (1) Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S., Pure Appl. Chem. **2015**, *87*, 1051-1069.
- (2) Prescott, H. A.; Li, Z.-J.; Kemnitz, E.; Trunschke, A.; Deutsch, J.; Lieske, H.; Auroux, A., J. Catal. **2005**, *234*, 119-130.