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Hamiltonian Derivation

Our system consists of one electronic spin, the NV center, coupled to a set of N nuclear

1
2
−spins via dipole-dipole magnetic interaction. The general Hamiltonian for such a system

has the form (~ = 1)

H = ωsσz +
N∑
i=1

γNBIi +
∑
i

fi(ri(t))
[
σIi − 3 (σr̂i(t))

(
Iir̂i(t)

)]
, (1)

1



where ωs is the Zeeman splitting of the electronic spin, σ are the spin operators of the NV

spin, which is spin-1, γN is the gyromagnetic ratio of the nuclei, B is an external magnetic

field, Ii represent the spin operators of the nuclear spins, fi(ri(t)) ≡ µ0γeγN
4πr3i

, is the dipole-

dipole force strength which depends on the relative position between the NV center and the

i − th nucleus, ri, the gyromagnetic ratios of the electron and nuclear spins γe,γN and the

vacuum permeability µ0 , and r̂i is the unitary vector joining the NV center with the i− th

nuclear spin. Interactions between the nuclear spins have been neglected since their effects

are averaged out by the fast stochastic motion.

The nuclear spins move following a Brownian motion, which in turns make the dipole-

dipole interaction to be a stochastic variable with certain correlation time τc. In our set-up,

we consider that the particles move slowly enough such that ωsτc � 1 and γN |B|τc � 1. In

this regime, we can perform a secular approximation owning to the fact that ωs � γN |B|,

obtaining

H = ωsσz +
N∑
i=1

γNBIi + σz
∑
i

Ai (ri(t)) Ii. (2)

With Ai(ri(t)) = fi(ri(t)) (3x̂iẑi, 3ŷiẑi, 1− 3ẑ2
i ) the so-called hyperfine vector. If now a

resonant microwave field resonant with the NV ms = 0 → ms = −1 transition is applied,

HMW = Ωσx cos(ωst), the Hamiltonian in the frame rotating with ωs reads

H = ΩSz +
N∑
i

(
γNB− 1

2
Aiz(t)

)
Ii + Sx

∑
i

Ai (ri(t)) Ii. (3)

We have introduced S as the NV spin operator in the dressed state basis, Sz = 1
2

(|+〉 〈+| − |−〉 〈−|),

S+ = |+〉 〈−| and S− = S†+.

In the Hartmann-Hahn double resonance (HHDR) scheme, the Rabi frequency Ω is set

resonant with the nuclear Larmor frequency ωN ≡ γN |B|. Working with a high magnetic

field such that Ω, ωN � |Ai| ∀i, and given that ωNτc � 1 is also fulfilled in our set-up, we

neglect fast oscillating terms together with magnetic field misalignment caused by Aiz(t),
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obtaining

H = ΩSz +
N∑
i

ωNI
i
z +

N∑
i

gi(t)S+I
i
− + gi(t)

∗S−I
i
+. (4)

with gi(t) = 1
4

(
Aix(t) + iAiy(t)

)
. This Hamiltonian corresponds to Eq.(1) in the main text.

Master Equation derivation

In this section we derive the master equation that describes the whole system and, in par-

ticular, the dynamical evolution of the NV polarization 〈n〉 (t) = 1
2

+ Tr (ρSz). In these

derivations we treat both classical and quantum noises for a multiparticle system, which

extends previous results in this field.1,2

In order to have a more complete description we start with a Hamiltonian that consists

of both flip-flop and flop-flop terms. For doing so, we rewrite the interaction Hamiltonian,

Hint =
∑N

i gi(t)S+I
i
−+ g∗i (t)S−I

i
+, in the interaction picture with respect to the energy part

Hω ≡ ΩSz +
∑

i ωNI
i
z, obtaining

H̃ ≡ e−iHωtHinte
iHωt =

N∑
i=1

gi(t)L
ie−i∆t + g∗i (t)L

i†ei∆t + gi(t)O
ie−iω′t + g∗i (t)O

i†eiω′t. (5)

Where Li ≡ S+I
i
−, Oi ≡ S+I

i
+ and ∆ = Ω − ωN , ω′ = Ω + ωN . For the sake of simplicity,

we set ∆ = 0, that is, we assume the HHDR condition is always fulfilled and thus, ω′ = 2Ω.

Next, this Hamiltonian may be split into a time-independent and a time-dependent stochastic

part as
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H̃0(t) =
N∑
i=1

〈g〉Li + 〈g∗〉Li† + 〈g〉Oie−i2Ωt + 〈g∗〉Oi†ei2Ωt. (6)

H̃1(t) =
N∑
i=1

ξi(t)L
i + ξ∗i (t)L

i† + ξi(t)O
ie−i2Ωt + ξ∗i (t)O

i†ei2Ωt. (7)

Where 〈g〉 is the average of gi(t) over all possible stochastic trajectories and ξi(t) = gi(t)−

〈g〉 = 1
4
ξix(t) + i1

4
ξiy(t) are the stochastic fluctuations around the average, with ξiα(t) =

Aiα(t)− 〈Aiα〉. Note that for H̃0 we can neglect fast rotating terms obtaining

H̃0 ≈
N∑
i=1

〈g〉Li + 〈g∗〉Li†, (8)

which is a time independent Hamiltonian. The master equation, also in the interaction

picture with respect to Hω reads

∂

∂t
ρ̃ = Lρ̃ = (L0 + L1(t)) ρ̃, (9)

where we have introduced the Liouvillian operators Li ≡ −i
[
H̃i, ·

]
. We look to the average

density matrix over all possible stochastic trajectories, 〈ρ̃〉 , which obeys

∂

∂t
〈ρ̃〉 = 〈(L0 + L1(t)) ρ̃〉 . (10)

In order to obtain a proper master equation for 〈ρ̃〉 (t) we follow.3–5 We start taking an

interaction picture with respect to L0 in Eq.(9) obtaining

∂

∂t
ρ̃(0) = L(0)

1 (t)ρ̃(0) (11)

Note that by ·(0) it is indicated that the operators are in the interaction picture with respect

to L0. The formal solution to the last equation is simply
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ρ̃(0)(t) = T exp

(∫ t

0

L(0)
1 (τ)dτ

)
ρ̃(0)(0), (12)

where T represents the time ordering. Taking now the average over all possible stochastic

trajectories we arrive to

〈
ρ̃(0)
〉

(t) =

〈
T exp

(∫ t

0

L(0)
1 (τ)dτ

)〉
ρ̃(0)(0). (13)

We note that in our case the system is found always in the same initial state ρ̃(0)(0). Writing

it explicitly, that is, making explicit the action of T , the latter equation reads

〈
ρ̃(0)
〉

(t) =

[
1 +

∫ t

0

dt1

〈
L(0)

1 (t1)
〉

+

∫ t

0

dt1

∫ t1

0

dt2

〈
L(0)

1 (t1)L(0)
1 (t2)

〉
+ · · ·

]
ρ̃(0)(0). (14)

Taking the time derivate in both sides leads us to

∂

∂t

〈
ρ̃(0)
〉

(t) =

[〈
L(0)

1 (t)
〉

+

∫ t

0

dt1

〈
L(0)

1 (t)L(0)
1 (t1)

〉
+ · · ·

]
ρ̃(0)(0). (15)

In order to arrive to a master equation for the average density matrix the only thing needed is

to invert Eq.(14), so we can express ρ̃(0)(0) in terms of
〈
ρ̃(0)
〉

(t). Introducing the expression

for the initial density matrix into the last equation we finally obtain

∂

∂t

〈
ρ̃(0)
〉

=
∑
n

kn
〈
ρ̃(0)
〉

(16)

where the operators kn are defined as

kn =

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−2

0

dtn−1

〈〈
L(0)

1 (t)L(0)
1 (t1)L(0)

1 (t2) · · · L(0)
1 (tn−1)

〉〉
c
. (17)

In the last expression we have used the brackets with subscript 〈〈· · ·〉〉 c to denote ordered

cumulants.4
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We note that L1 is composed of a sum of N independent random variables, ξi(t), with

identical average properties, 〈ξi〉 = 〈ξj〉 ≡ 〈ξ〉 ∀i. Due to the fact that for independent

random variables all cross-cumulants vanish, each cumulant 〈〈L1(t) · · · L1(tm−1)〉〉c is linear

with N . A rough analysis of the 4 − th cumulant allow us to make a prediction on the

magnitude of the n− th cumulant. For instance

〈〈
L(0)

1 (0)L(0)
1 (0)L(0)

1 (0)L(0)
1 (0)

〉〉
c
∼ N

〈〈
ξ4
〉〉

c
= N

[ 〈
ξ4
〉
− 3

〈
ξ2
〉2
]
. (18)

Note that in our notation the single bracket, 〈· · ·〉 represents the moment and not the cu-

mulant. These terms can be found by explicit integration over the interaction volume

N
〈〈
ξ4
〉〉

c
=
〈
ξ4
〉
−3
〈
ξ2
〉2

= N
[ 1

V

∫
V

ξ4dr−3
1

V 2

(∫
V

ξ2dr
)2]

= ρ

∫
V

ξ4dr−3
ρ

V

(∫
V

ξ2dr
)2

.

(19)

Since the interaction fluctuations 〈ξi〉 decay with the distance, taking V → ∞, we can see

that the 4 − th cumulant is proportional to the 4 − th order moment. This analysis holds

for every order, as will be explained in the next section. Therefore, we take the second

order of the expansion as leading order. The general solution for the master equation in the

non-interaction picture with respect to L0, becomes

∂

∂t
〈ρ̃〉 =

[
L0 +

∫ t

0

〈〈
L1(t)etL0L1(t− τ)

〉〉
c
e−tL0dτ

]
〈ρ̃〉 . (20)

Now, under the assumption that |L0|τc � 1, with τc the correlation time (see following

section for an accurate definition), we approximate e±L0 ≈ 1. This assumption is equivalent

to
√
N 〈g〉 τc � 1, which is fulfilled in our set-up (see bellow). In our regime, the fluctuations

are larger than the average value 〈g〉. In the following, we use that by definition 〈L1(t)〉 = 0,

obtaining
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∂

∂t
〈ρ̃〉 =

[
L0 +

∫ t

0

〈L1(t)L1(t− τ)〉 dτ
]
〈ρ̃〉 . (21)

We recall that this is a second order approximation in terms of
〈
ξiα
n〉
τn−1
c , and thus,

as we keep the cumulants till second order this approximation is valid for times t �

τc/
(
N
〈
ξiα

3
〉
τ 3
c

)
. The action of the correlator on the density matrix gives

∫ t

0

〈L1(t)L1(t− τ)〉 dτ 〈ρ̃〉 =
1

4
γ(0, t)

N∑
i=1

[
D
(
Li
)

+D
(
Li
†
)]
〈ρ̃〉+

1

4
γ(2Ω, t)

N∑
i=1

[
D
(
Oi
)

+D
(
Oi†
)]
〈ρ̃〉 . (22)

Where D(·) denotes the Lindblad superoperator, whose action on the density matrix is

simply

D(A) 〈ρ̃〉 = A 〈ρ̃〉A† − 1

2

{
A†A, 〈ρ̃〉

}
, (23)

where A is a given operator. In Eq.(22) all the fast oscillating terms have been neglected.

We remark that since the particles move independently then ξi(t) are independent random

variables and thus, we have used that
〈
ξiα(τ)ξjβ(0)

〉
= 〈ξiα(τ)ξiα(0)〉 δα,βδi,j. Also, as the

diffusion is homogeneous, the correlation function does not depend on the direction of the

hyperfine vector, α, or on the particle, i, 〈ξiα(τ)ξiα(0)〉 ≡ 〈ξ(τ)ξ(0)〉. Moreover, we have

introduced

γ(ω, t) =

∫ t

0

〈
ξiα(τ)ξiα(0)

〉
cos (ωτ) dτ. (24)

Note that for t � τc, with τc the correlation time, the upper limit of the integral may be

extended to infinity, obtaining limt→∞ γα(ω, t) = 1
2
Sα(ω), with S(ω) the spectral density

function of ξiα(t). A net polarization transfer is only possible if flip-flop induced relaxation
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predominates over all the other effects. That is, S(2Ω)/S(0)� 1. For a Lorentzian spectral

density this condition translates into χ ≡ Ωτc � 1. In our set-up τc ≈ 10µs, ωN = 2.8 MHz,

so S(2Ω)/S(0) ≈ 10−4, that means that flip-flip terms may be neglected. In fact, following

similar calculations other relaxations mechanisms related to Hamiltonian terms such as S±I
i
z

or I⊗ Ii, may be neglected when Ωτc � 1.

Taking all mentioned conditions into account, the effective master equation back in the

Schrödinger picture reads

∂

∂t
〈ρ〉 = ˙〈ρ〉 = −i [H0, 〈ρ〉] +

1

4
γ(t)

N∑
i=1

D
(
S+I

i
−
)
〈ρ〉+D

(
S−I

i
+

)
〈ρ〉 , (25)

which is a master equation in Lindblad form with time dependent coefficient γ(t) ≡ γ(0, t).

The action of Eq. (25) is well understood. There are two main contributions. On the one

hand, a Hamiltonian part, H0, whose principal effect is a coherent transfer of polarization

between the NV center and the nuclear spins. On the other hand, the Lindbladian term that

generates an irreversible polarization transfer towards the nuclei caused by the stochastic

motion.

In order to obtain a close equation for the population transfer, we first analyze the

coherent part of the dynamics ruled byH0, this will allow us to perform a Born approximation

that will be fundamental for our following approach. First, we take a look into the form of

H0

H0 = ΩSz +
N∑
i=1

〈ω〉 I iz +
N∑
i=1

〈g〉S+I
i
− + 〈g〉∗ S−I i+. (26)

It corresponds to the Hamiltonian of a single NV center interacting with a solid bath of N

nuclear spins, all of them with the same energy splitting 〈ω〉 and with the same coupling

strength 〈g〉. We recall, 〈· · ·〉 is the average over the stochastic trajectories of the nuclei.

More specifically, this solid bath is composed by the N spins that are enclosed in certain NV

interaction volume V . As the nuclei diffuse rapidly in the whole space, we assume that they
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only spend certain time τB inside the NV interaction volume V . This τB may be seen as the

time that a particle needs to leave the interaction volume and thus, being replaced by some

other particle. Therefore, the coherent evolution caused by H0 takes place in a scale marked

by
√
N | 〈g〉 |τB. Assuming that τB ≈ 1

6
V 2/3

Doil
≈ τc, where Doil is the diffusion coefficient, and

V = L3 with L ≈ 2 z0, we obtain for our set-up
√
N | 〈g〉 |τB ≈ 0.1 − 0.01 < 1, depending

on whether we use a shallow NV center, z1
0 = 3.2 nm or a deeper NV, z2

0 = 5.3 nm. This

condition is equivalent as being in the weak-coupling regime with the bath as described by.5

Consequently, considering a time axis with time intervals larger than τc ≈ τB, we can rewrite

the average density matrix as

〈ρ〉 = 〈ρ〉NV ⊗ ρB, (27)

where ρNV is the average density matrix for the NV center while ρB is the density matrix

of the bath, which corresponds to a thermal state. We remark the latter equation is usually

referred to as the Born approximation. This factorization of the density matrix allows us to

trace out the nuclear spin space, obtaining a master equation solely for ρNV

˙〈ρ〉NV = −i[ΩSz, 〈ρ〉NV ] +
1

4
Nγ(t) [〈n〉BD(S+) + (1− 〈n〉B)D(S−)] 〈ρ〉NV . (28)

with 〈n〉B is the average population of the spins in the bath. Moreover, we can derive the

evolution equation for the NV population 〈n〉 = 1
2

+ Tr (Sz 〈ρ〉NV ), obtaining

˙〈n〉+N
1

4
γ(t) 〈n〉 = N

1

4
γ(t) 〈n〉B . (29)

This equation corresponds to Eq.(4) in the main text. We recall that this approximation is

only valid for times t� τc/(N 〈ξ3〉 τ 3
c ) ≈ 100µs and t� τB

1
(
√
N〈g〉τB)2

≈ 100µs.
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Relaxation of spin system

The measured data reveals that the NV center is affected by some environmental noise.

Namely, this noise will make the NV center lose its polarization at a given rate. Normally,

when the spin is driven and we are in the dressed state bases this rate is called T1ρ.
6 Including

these effects in our approach is straightforwardly done by adding a dissipation term to the

master equation Eq.(28). Obtaining

˙〈ρ〉NV = −i[ΩSz, 〈ρ〉NV ]+
1

4
Nγ(t) [〈n〉BD(S+) + (1− 〈n〉B)D(S−)] 〈ρ〉NV +

1

2

1

T1ρ

[D(S+) +D(S−)] 〈ρ〉NV .

(30)

This equation allow us to include the effects of T1ρ in our analysis and thus, have a complete

perspective of the NV dynamics.

Hyperfine vector analysis

In the previous section we have seen the polarization dynamics is mainly determined by

γ(t) =
∫
〈ξ(τ)ξ(0)〉 dτ . Despite the simple description of the nuclear trajectories, since they

move in free-diffusion, a detailed analytical description of ξiα(t) turns to be complicated.

Aiming to derive an analytical solution for Eq. (29) we make two assumptions: i) Higher

moments are negligible when compared to the average and variance, which is a necessary

condition for Eq.(21). ii) The correlations are well approximated by an exponential curve.

The former assumption justifies the validity of using cumulants up to order two in the

cumulant expansion performed in the previous section. We recall, that even in the absence of

a correlation time, the n− th order cumulant contribution is of order 〈ξn〉 tn−1.4 In this case,

we evaluate this time, t as the time in which most of the NV polarization is transferred to

the nuclear spins. This can be estimated by: i) simulation of the system, and ii) evaluating

this time assuming the second order is correct and then check for self-consistency. Both
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methods yield the same time. Using the second method, the time for polarization should

be - 1
〈ξ2〉τcN ∼ 10µs. Numerical calculations suggest that indeed, the second term may be

taken as the leading term and higher order terms decay exponentially with n. Numerical

calculations are shown in Fig.(S1).

With regard to the correlation profile, we numerically calculate the normalized correlation

function. The result is depicted in Fig.(S1). We see the correlation decay fast for short times

and presents a heavy tail for larger times. In our set-up, nuclei interact with the NV center

for a short-time before diffusing away and being reinitialize. Within this short-time interval

an exponential decay accurately fits the numerical calculated correlation function. This

approximation results in being accurate when tested against full numerical simulation with

HPA, see Fig.(S3).

2 4 6 8 10
10-10

10-5

100

-200 -100 0 100 200
0

0.2

0.4

0.6

0.8

1

Figure S1: (a) Normalized contribution of the n − th moment with respect to 〈ξ2〉, βn ≡
〈ξn〉tn−1

〈ξ2〉t . It decays rapidly with n, permitting us to accurately describe ξiα(t) making use

solely of its first and second moment. (b) Correlation profile of ξiα(t) with an exponential fit.

Correlation function calculation

The correlation function of the coupling coefficient between the NV and each individual

spin is important for determining the polarization rate. When the process is stationary, the

correlation function is given by -
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〈ξiα(t)ξiα(0)〉 =

∫
ξiα(~r2; t)ξiα(~r1; 0)ρ(~r2; t|~r1; 0)ρ(~r1; 0)d3~r1d

3~r2. (31)

with ξiα(t) = Aiα(t) − 〈Aiα〉, ρ(r1; 0) the distribution of the particle at the initial time (con-

sidered to be uniform) and ρ(~r2; t|~r1; 0) is the conditional probability of the particle being

at ~r2 at time t given that it was in ~r1 at time t = 0. This conditional probability is nothing

but the solution of the diffusion equation with the initial condition at ~r1 with a reflective

boundary condition at z = z0, satisfying dρ
dz
|z2=z0 = 0

ρ(~r2; t|~r1; 0) =
1

(4πDt) 3
2

e−
(x1−x2)

2

4Dt e−
(y1−y2)

2

4Dt

(
e−

(z1−z2)
2

4Dt + e−
(z1+z2−2z0)

2

4Dt

)
(32)

with D the diffusion coefficient. The correlation function can not be calculated analytically

and therefore one must calculate it using a numerical approach, either by numerical integra-

tion or by using data obtained by a stochastic molecular dynamics simulation. While the

former approach is rather straight forward, the latter requires to obtain a number of possible

trajectories and then averaging the correlation function over all trajectories. This was done

using the MATLAB function xcorr.

In this context, we define the correlation time such that when t = τc

〈
ξiα(τc)ξ

i
α(0)

〉
≡ 1

e

〈
ξiα(0)ξαα

i(0)
〉

= 1/e, (33)

in other words, the correlation time is a characteristic time such that when t > τc, ξ
i
α(t) and

ξiα(0) can be treated as statistically independent.

Since the correlation time is inversely proportional to the diffusion coefficient, τc should

also depend on a parameter with a dimension of length. This parameter was considered to

be z0. Intuitively, as the depth of the NV increases, an interacting nuclear spin has to be

displaced more in order to change the interaction by a significant amount, increasing the

correlation time. We can see in Fig.(S2) that the dependency of τc on the depth of the NV

is indeed quadratic for shallow NVs (z0 ∼ 6 nm). For deeper NVs, due to the long range
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interaction (∼ 1
r3

) this dependency deviates because the interaction length is comparable to

the NV’s depth and takes part in the correlation time.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

Simulation
Fit

Figure S2: Correlation time vs NV depth. Results obtained from simulation. For Shallow
NVs the data is fitted to a quadratic function.

Bosonic approximation and Gaussian states

In order to numerically simulate a large spin system we make use of the Holstein-Primakoff

approximation (HPA),7 which expresses the spin operators in terms of bosonic operators

S+ =
√

2Sa†
√

1− a†a

2S
≈
√

2Sa†, (34)

S− =
√

2S

√
1− a†a

2S
a ≈
√

2Sa, (35)

Sz =
(
−S + a†a

)
, (36)

Where, S = 1
2

for spins-1
2
. This approximation has been successfully used in other works for

describing interacting spin baths in similar scenarios.8 In fact, within the HPA a polarized

spin is represented as a boson in its ground state. As far as only the ground and first excited

states play a major role in the dynamical evolution of the system, the HPA yields satisfactory

results. Since our system consists on numerous spins in thermal state with mainly flip-flop
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interactions and moreover strong correlations between nuclei are not built up owning to

the stochastic motion, the HPA is expected to accurately describe the desired polarization

dynamics in the regime we are interested in. Performing the same approximation for the

nuclear spin operator I on Eq. (4), we directly obtain the bosonic Hamiltonian

H = Ωa†a+
N∑
i

ωNb
†
ibi +

∑
i

gi a
†bi + g∗ ab†i , (37)

This Hamiltonian corresponds to a system of two coupled harmonic oscillators under the ro-

tating wave approximation (RWA). Introducing the bosonic operator vector, R = (a, bi, · · · , bN)T ,

we express the total Hamiltonian as

H =
1

2
R†VR, (38)

with V = V0 + V1, containing all the interactions between the operators

V0 =


a† b†

a Ω 0

b 0 ωN



V1 =


a† b†

a 0 gi

b g∗i 0


In the last expressions, for the sake of simplicity, only the matrices for 2 interacting bosons

are written down.

A quadratic bosonic Hamiltonian as Eq. (37) induces a Gaussian unitary evolution. This

means, given a certain Gaussian state, its evolution under the action of a quadratic bosonic

Hamiltonian will preserve its Gaussian character.9,10

All the quantum information of a Gaussian state is contained in the first and second

moments of the quadratures operator R: the mean, 〈R〉, and the covariance matrix, γ.
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Moreover, if the Hamiltonian has not linear terms, and for initial states with 〈R〉 = 0, the

whole system is described by the covariance matrix, defined as

γj,k =
〈
b†jbk

〉
, (39)

with j, k ∈ {0, N}, being b0 = a. Making use of the von Nuemann equation for the evolution

of
〈
b†ibj

〉
in time,

˙〈
b†ibj

〉
= +i

〈[
b†ibj, H

]〉
, (40)

derive a evolution equation for γ results straightforward,

γ̇ = −i [V, γ] . (41)

We remark, γ has dimensions N + 1 ×N + 1, where N is the total number of nuclei. This

is the main advantages of the Gaussian state formalism, while for a spin system we will

need to compute the 2N elements of the density matrix to describe the system, for a bosonic

system it is sufficient to evolve γ. Therefore, while simulating a spin system of N ≈ 15 spins

already becomes computationally hard, the use of HPA allows us to simulate systems with

thousands of bosons easily.

Relaxation of the bosonic system

In order to implement a relaxation process that will take the place of T1ρ effects in a spin

system, we include a dissipation part on the evolution equation of the bosonic system

ρ̇ = −i [H, ρ] +
1

T1ρ

(
3

2
D(a) +

1

2
D
(
a†
))

ρ, (42)

where ρ is the density matrix of the whole bosonic system, and D(a), D
(
a†
)

are the Lindblad

dissipator on the creation and annihalition operators. The evolution of the covariance matrix,

15



γ, under the action of such a master equation is given by

γ̇ = −i [V, γ] +
1

2

1

T1ρ

[∆− {∆, γ}] . (43)

where ∆i,j = δ0,iδ0,j is a matrix that indicates the action of T1ρ affects only the NV center

(labeled as 0). In addition to quadratic Hamiltonians, Lindblad equation of the form of

Eq.(42) also maintains the Gaussian character of an initial Gaussian state.11

Numerical Simulation parameters

As stated in the main text, the numerical simulation based on HPA is performed considering

N independently moving nuclei in a finite box with periodic boundary conditions and length

l. This box represents the detection volume of the NV center. The simulation box sets a

cut-off to other parameters such as the particle number, for a fixed particle density, ρ, then

N = ρ l3, or the interaction variance inside the box σ2
l , with liml→∞ σ

2
l = σ2. That means,

the selection of l is a compromise between the computational efficiency, set by N , and the

ratio χ = σ2
l /σ

2, which should be χ ≈ 1 for a satisfactory description. Simulation results for

different densities and lengths are depicted in Fig.(S3).

In our experiment, the oil density equals, ρoil = 50 spins
nm3 . Therefore, it requires to consider

a significantly large number of nuclei inside the simulation box. For a box length of l = 20 nm,

then N = 4 · 105 and χ ∼ 92%. Even for this length, N is still too large, so we consider

effectively Neff = 5 · 103 spins with a effective interaction geff =
√

80g. This effective model

has been proven to reproduce exactly the NV spin dynamics.

Determining the depth of shallow NV centers

In order to estimate the NV center depth z0, the magnetic field noise produced by the

Larmor precession of the hydrogen spins within the immersion oil (Fluka Analytical 10976)
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Figure S3: Confrontation between full numerical simulation with HPA (markers) and theoret-
ical prediction for spins (solid lines) for different densities and z0 = 3.2 nm. (a) Simulations
for bosons diffusing in a box with l = 25 nm, χ = 95%. (b) Simulation for l = 12.5 nm
and χ = 78%. For this box size the numerical simulation gives satisfactory results with fast
computational time.

was measured via the XY8-N sequence. These measurements were performed at 660 G,

which corresponds to a hydrogen Larmor frequency of ν ≡ ωN/(2 π) = 2.81 MHz. We

get the magnitude of the RMS magnetic field BRMS from the measured XY8 signal by

reconstructing the power spectral density S(ν) via a deconvolution process using the known

filter function and then integrating the peak signal. From BRMS the depth of the NV center

can be calculated analytically (see e.g.12):

z0 =

[
1

B2
RMS

5

1536π
µ2

0h
2γ2

Nρoil

] 1
3

, (44)

where γN = 42.58MHz
T

is the nuclear gyromagnetic ratio and ρoil = 50 protons/nm3 the proton

density of the immersion oil.

Fig.(S4) shows the data of the XY8 measurements and the corresponding spectral density for

the two NVs. From these measurements we can estimate the depths to be z1
0 = 3.2± 0.2 nm

and z2
0 = 5.3± 0.1 nm.
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(a) Depth estimation for NV1

(b) Depth estimation for NV2

Figure S4: The left plots show the raw XY8 data, normalized to the Rabi contrast. Right
side: The power spectral density is calculated from the XY8 data and by the area of the
function around the 1H Larmor frequency the depth can be calculated (see Eq.(44)) (a)
Measurement corresponding to shallower NV center z1

0 = 3.2 nm. (b) Depth measurement
outcomes for an slightly deeper NV center z2

0 = 5.3 nm .
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Relaxation in the dressed state basis T1ρ

Besides the polarization transfer dynamics during the spin locking pulse there is also relax-

ation due to resonant magnetic noise. Since this decay happens in the same time scale as

the polarization transfer process, the characteristic relaxation time in the dressed state basis

T1ρ is detemined experimentally and taken into account in the theoretical predictions. This

is done by measuring the decay of the NV spin state while the MW drive during the spin

locking pulse is set off-resonant from the HHDR condition (by 500 kHz). In Fig.(S5) the NV

decay during spin locking fulfilling HHDR condition (polarization transfer and relaxation) is

compared to an off-resonant measurement (only relaxation). From a single exponential fit,

f(τ) = a+ b exp[−τ/T1ρ], we obtain T1ρ = 10.8± 0.6µs for NV1 and T1ρ = 17.0± 1.4µs for

NV2.

In all experimental data sets the fluorescence measured from a single NV center is nor-

malized with the steady-state fluorescence at the end of the laser pulse and it scaled by the

contrast of a by an additional Rabi experiment. The error bars are determined with photon

shot-noise, error propagated with the fluorescence normalization and divided by the Rabi

amplitude.

Steady-State polarization

Throughout this work we have focused on the polarization dynamics of one single NV center

in one single cycle. In order to achieve significant polarization in the oil sample the protocol

must be repeated numerous times, and the general set-up may be modified. The steady-

state polarization, that is, the maximum achievable polarization using our protocol may be

estimated as follows.

For hyperpolarization a diamond sample with high density of NV centers is needed.

Given a bulk diamond with different NV centers distributed homogeneously through the

whole volume, such that the interaction among different electronic spins is negligible, with a
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(a) Resonant and off-resonant decay for NV1

(b) Resonant and off-resonant decay for NV2

Figure S5: Decay of NV fluorescence under fulfilled HHDR conditions (green points) and
under off-resonant conditions (blue points). The off-resonant decay is fitted by a single ex-
ponential decay (blue curve). The fitting curve is not forced to pass through 〈n〉 (0) = 1
since the normalization in the plot for the off-resonant curve is solely illustrative; only the
decay rate T1ρ is important. The corresponding time constant T1ρ is included in the theo-
retical predictions (green curve). Not taking T1ρ processes and thus only taking polarization
transfer into account would lead to the black dotted theory curve. (a) Polarization loss, T1ρ

relaxation and theoretical predicted polarization curve for an NV center at z1
0 = 3.2 nm. (b)

Same for NV center at z2
0 = 5.3 nm.
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superficial density σNV . If a thin layer of oil of thickness Loil is deposited onto the diamond

surface, then particle reservoir for a single NV centers consists of a volume VT = Loil/σNV .

On the other hand, during one cycle a single NV exclusively interacts with N nuclei,

which are inside its own interaction volume V . Therefore, after a polarization cycle, whose

duration is τp, the average polarization per nucleus is 1
2

1
N
α, as defined in the main text.

Nonetheless, in a single cycle the NV center has only interacted with a fraction V/VT of the

total number of 1H in the oil. For all the nuclei to interact at least once with the NV, the

cycle must be repeated n times with n = VT/V . Hence, the total required time is T = nτp.

In summary, at time T = nτp the average polarization per nucleus is P = 1
2

1
N
α. The same

procedure can be repeated m times, and since the polarization acquisition is only limited by

the nuclear relaxation time, T1n, then for an optimal performance m = T1n/T . Assuming

that for small amounts the polarization is additive, we obtain that the maximal average

polarization per nuclei is

Pmax =
T1n

T

1

2

1

N
α =

1

2
α
T1n

τp

σNV
Loilρoil

, (45)

For realistic values, α = 0.8, τp ≈ 5µs, T1n ≈ 1 s, ρoil ≈ 50 protons
nm3 , Loil ≈ 1µm, σNV ≈

2 · 10−3 NV
nm2 , the calculations yield Pmax = 10−3, which severally exceeds the thermal average

polarization P Th = 10−7.

Measurement outcomes for rigid and semi-rigid samples

The dynamical behavior of oil molecules in the vicinity of the diamond sample is unknown.

Chemical reactions such as adsorption may occur, hence blocking the stochastic motion of

the molecules resulting in an effective rigid bath for the NV center. Nonetheless, in our

model we consider the protons as randomly moving particles in free diffusion with certain

diffusion coefficient Doil. This description is expected to be accurate when the detection

volume is big enough and thus, the big majority of the molecules diffuse freely while only an
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small fraction may participate in adsorption.

Still, using HPA and Eq.(43) we can estimate the measurable polarization loss from a

NV center when interacting with a rigid or semi-rigid oil. The outcome of these simulations

helps us to discriminate whether the measured polarization loss may be also attributable to

a solid sample or if it is exclusively inherent to liquid oil.

Since molecular simulations with the used oil (Fluka Analytical 10976) are not available,

we explore different proton configurations with different orderings. For the sake of simplicity,

we start from an initial configuration in which all protons form a cubic lattice with lattice

parameter a. From this starting point, different configurations are achievable by displacing

each of the protons by a random quantity δi. In this context, the magnitude of δi sets the

amount of disorder with respect to the initial cubic lattice, hence we quantify the disorder

by χ ≡ 2|δi|
a

.

Consequently, we can study the different signals on the NV center coming from different

types of bath: from a complete ordered crystal, χ = 0, to homogeneously distributed non-

overlapping protons, χ = 80 %. We remark that our aim is not to predict the exact NV

center dynamics but rather the general behavior for a given kind of bath.

For the numerical simulations we have used Eq.(43) with a time-independent Hamilto-

nian. The electronic spin relaxation, T1ρ, is described by a local Lindblad equation. This

description is accurate and valid for non correlated systems such as liquid oil. Nonetheless,

here it is used for highly-correlated baths such as rigid oil since it is expected to give sat-

isfactory results.13 Further details on the simulation techniques may be found in the Secs.

Bosonic approximation and Gaussian states and Numerical Simulation parameters.

The outcomes of the simulation are depicted in Fig.(S6). For a rigid bath, the amount

of possible configurations of the protons is infinite and therefore we have chosen to present

the average signal (obtained by averaging over all the plausible polarization loss curves),

together with the standard deviation. Moreover, the average signal (blue curve Fig.(S6)),

coincides with the signal that a semi-rigid solid produces on the NV center. In this context, a
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semi-rigid solid consists of and ensemble of protons that are fixed during the duration of the

spin-locking time, t, but move by a random quantity δi between two different measurements.
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Figure S6: Comparison between rigid and semi-rigid baths and experimentally measured
polarization loss for a shallow NV center at z1

0 = 3.2 nm and T1ρ = 11µs. For each order
parameter, χ, infinite configurations are possible; in the figure there are shown the average
value (blue line) and the standard deviation (blue shadow). (a) The protons are found at
fixed positions conforming a cubic lattice with lattice parameter a. The NV center coherently
interchanges polarization with the bath. Nuclear-nuclear interaction effectively detunes the
nuclei from the HHDR and therefore full-oscillations are not seen.(b-e) Disorder models with
different disorder parameter χ. The protons are assumed to be at random positions inside
the detection volume, that is, disordered. Still, the coherent oscillations are appreciable. For
larger disorder factors, the number of plausible nuclear configurations increase hence leading
to a bigger standard deviation. {In the calculations, have been used, N = 800, L = 20,
ρoil = 50 spins/nm3, T1ρ = 11µs.}

The simulations suggest that for both rigid and semi-rigid baths the NV experiences

coherent oscillations. Nonetheless, this behavior is attenuated when disorder dominates.

When compared to the experimental measured data, none of the examined scenarios, neither

rigid nor semi-rigid, can reproduce the observed behavior. Hence, we conclude that the

description of the oil molecules as a liquid is adequate.
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