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Emergence of magnetism: gap engineering and quantum fluctuations

In this section we discuss the values of the model parameters used for the calculations

reported in the manuscript and their impact on our results. In particular we focus on the

conditions for the onset of magnetism in our nanoflakes.

The estimate of realistic interaction parameters for Hubbard-like modeling of solids is

still a highly debated and very controversial issue in solid-state physics. The value of the

bare Hubbard interaction among π-electrons was computed by Parr et al.1 as U=16.93 eV.

Assuming a value of t ≈ 2.8 eV for graphene,2 it yields an estimate U/t ≈ 6. In order to

obtain the effective U for a Hubbard model, one has to consider the effect of screening. In a

relatively small nanostructure we can expect a poorer screening with respect to a graphene

sheet because of the finite-size gap due to the confined geometry. Therefore we assume a

value of U/t=3.75.

We stress however that the message of the present manuscript does not rely on precise

estimates of parameters. The basic requirement to exploit quantum interference as a spin

filter is that magnetism sets in for the values of the interaction we consider. The relevance of

magnetism in graphene nanostructures with ZZ edges has been indeed predicted in a variety

of papers and, most importantly, has been found experimentally in small nanoribbons, where

the magnetic ordering survives up to room temperature, strongly supporting the relevance

of our results.

In a system with a finite spectral gap ∆ the transition from the paramagnetic (PM) to the

antiferromagnetic (AF) state inevitably sets in at a finite value of the Coulomb interaction

(UAF ) which is mainly controlled by the amplitude of the gap. In particular, in graphene

nanoflakes the quantum confinement gap ∆ decreases as the inverse of the linear size of the

nanoflake L, as explicitly shown in the numerical calculations reported in Fig. 1(c) of the

manuscript, in agreement with theoretical and experimental results in the literature.3,4 As

a result, also the value of UAF is suppressed upon increasing the size of the nanoflake. This

is shown by our DMFT results in Fig. S1, where we show the average magnetization 〈Sz〉
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of the nanoflake as a function of U/t, for nanoflakes of increasing size. Note that the value

of UAF decreases from UAF/t ≈ 3.1 to UAF/t ≈ 2.0, upon increasing the linear size of the

nanoflake from L≈14 Å (3N nanoflake) to L≈25 Å (5N nanoflake).

It is important to stress, when comparing our results with previous literature, that our

dynamical mean-field theory (DMFT) include quantum effects which tend to reduce the

mean-field order parameter. This leads to a substantial increases of UAF with respect to

static mean-field approaches, which completely neglect quantum fluctuation leading to small

values of UAF for graphene nanoflakes.5,6

To be concrete, we refer to calculations for a 3N hexagonal nanoflake,7 where it is es-

timated UAF/t ≈ 2.0 for static mean-field, and UAF/t ≈ 3.1 for DMFT. Therefore, for a

5N hexagonal nanoflake, the static mean-field value of UAF/t≈1.4 indicated by Fernandez-

Rossier and Palacio5 is perfectly compatible with our UAF/t ≈ 2.0 DMFT estimate from

Fig. S1.

Independently on the specific value of U/t chosen or the approximation employed, here

we show that it is reasonably possible to realize magnetic nanoflakes also exploiting size

engineering, i.e., lowering the value of UAF by reducing the quantum confinement gap.
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Figure S1: Average magnetization 〈Sz〉 as a function of U/t and corresponding numerical
estimate of UAF/t (dahsed line) for nanoflakes with N = 3, N = 4, and N = 5 edge atoms
(right panel).
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Effect of the hybridization to the leads

Transport properties in the weak- and strong-hybridization regime

In the following we show the effect of the hybridization between the 3N nanoflake and the

leads on the QI antinode in the meta configuration. In particular, we show the evolution of

T (ω) from the weak- to the strong-hybridization regime.

The interacting Green’s function of the isolated nanoflake (indicated with an empty circle,

G◦) is defined as

G◦(ω)=
(

ω+µ−Σ(ω)
)−1

, (1)

where µ is the equilibrium chemical potential of the nanoflake and Σ(ω) is the dynamical

self-energy matrix that takes into account electron-electron correlations. In the presence of

the leads, the Green’s function of the device (indicated with a filled circle, G•) is calculated

by solving the Dyson following equation

G−1
• (ω) = G−1

◦ (ω)− ΣL(ω)− ΣR(ω), (2)

where the leads are described by the embedding self-energy, defined as Γα(ω)=− ı
2

(

Σr
α(ω)−

Σa
α(ω)

)

, with α = L,R corresponding to the left (L) and right (R) leads.

In Fig. S2(a) we show the transmission coefficient T (ω) in the meta configuration (i.e.,

the one which exihibits a QI antinode) in the PM state. We show the evolution of T (ω) from

the weak- (Γ/t ≈ 0.02) to the strong-hybridization (Γ/t ≈ 0.25) regimes. Upon increasing

the hybridization we observe two main effects: i) the spectral features of the transmission

become visibly broadened, and ii) the overall transmission increases (as the conductance

g ∝ Γ2). However, due to destructive QI, the transmission at ω = 0 is strongly suppressed

at any value of Γ/t, demonstrating the robustness of the QI features in all hybridization

regimes.

For the hexagonal nanoflake considered here G◦(ω) is invariant under the C3 spatial
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Figure S2: T (ω) in the meta configuration for the 3N nanoflake. (a) In the PM state: the QI
antinode is robust by increasing the hybridization strength to the leads Γ/t. (b) Comparison
between non-self-consistent (shaded area) and fully self-consistent (dashed line) treatment of
the leads on the transmission in the weak- (Γ/t=0.02) and strong-hybridization (Γ/t=0.25)
regimes. (c-d) Spin-resolved QI antinode in the AF state at Γ/t = 0.02 and Γ/t = 0.25,
showing that the QI spin-filtering effect is robust against the values of Γ/t.

rotation symmetry on the graphene plane. However, the presence of the leads breaks the C3

rotational invariance and lowers the symmetry of the system (in all contact configurations).

Hence, in order to evaluate the transmission, it is necessary to calculate G• and all observables

fully self-consistently. For the sake of completeness, in Fig. S2(b) we also compare the meta

transmission function T (ω) obtained in the weak- and strong-hybridization regimes, when

the leads are taken into account self-consistently or when the Green’s function of the isolated

nanoflake is used to evaluate the transmission, showing that there is barely any difference in

the resulting tranmission.

In Figs. S2(c,d) we show the same analysis in the AF state. Here, the leads perturb the

distribution of the magnetic moments with respect to the isolated nanoflake, and the local

magnetic moment 〈Sz
i 〉 in the proximity of the corresponding edges are partially quenced (up

to 30% in the strong-hybridization limit). However, the splitting between the spin-resolved
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QI antinodes ∆ω = ωQI
↑ −ωQI

↓ does not depend on the magnetic pattern within the nanoflake,

but is controlled by the average staggered magnetization 〈Sz〉, which is, instead, only weakly

affected by the leads. As a consequence, minor differences can be observed in the strong-

hybridization limit (e.g., the position of ωQI
σ change slighly) but the QI-assisted spin-filtering

effect remains robust. Remarkably, while this effect is reasonable for large nanoflakes with

lower surface-to-bulk ratio, we find this to be true even for the 3N nanoflake, which has a

linear size of L ≈ 14 Å, and a surface-to-bulk ratio of 1/3. As a result, the spin-resolved

QI antinode in the AF state is a robust feature of graphene nanoflake junctions, almost

independently on size.

Transport properties beyond the wideband limit (WBL)

In the wide-nad limit (WBL), the embedding self-energy of the leads is a purely imaginary

constant ΣL/R(ω)=−ıΓ, which it contributes to the broadening of the many-body states of

the nanoflake. A realistic hybridization to the leads would also include a real part which

instead shifts the poles of the Green’s function.

The applicability of the WBL in transport calculations has been discussed in details

by Verzijl et al.,8 concluding that WBL qualitatively reproduces the main features of the

transmission and the bias-voltage dependence in cases where the transmission is dominated

by the properties of the molecule. This sheds a positive light on our work, as the fundamental

feature for the realization of the spin-filtering effect is indeed a property of the molecule, i.e.,

the destructive QI, and not the hybridization with the contacts.

Nevertheless, in order to understand the possible effect of a realistic hybridization func-

tion on the transport properties, in the following we consider and explicitly take into account

the effects of the leads beyond the WBL, and we present transport calculations with a semi-

circular (Bethe) density of states with a finite bandwidth D for the leads. The corresponding
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Figure S3: T (ω) in the meta configuration for the 3N nanoflake comparing the wide-band
limit (WBL) and a Bethe density of states for the leads. (a,b) In the PM state: the QI
antinode is robust by increasing the hybridization strength to the leads Γ/t. (c) In the
AF state: the QI antinote is robust. Some quantitative deviations can be observed with
respect to the WBL in the extreme case in which the hybridization is strong (Γ/t = 0.25)
and the edge of the leads’ DOS lies at the edge of the AF gap (i.e, for D/t = 0.5). (d)
Spin-polarization of the transmission: even in the most unfavorable case the polarization is
suppressed up to about 30%, but the spin-filtering effect survives.

embedding self-energy reads

Σ(ω) = V 2 4

π

∑

k

1

ω + µ− ǫk

√

1−
(ǫk
D

)2

. (3)

In order to compare the Bethe lead with the WBL, we chose the hybridization parameter V

so that Γ≡−V 2
∫∞

−∞
dωℑΣ(ω)/π for the Bethe leads is equal to the value of Γ in the WBL.

The results are shown in Figs. S3(a,b) for the PM state, and Figs. S3(c,d) for AF state.

At low-energy, the calculations with the Bethe DOS reproduces the T (ω) of the WBL both

in the weak- and in the strong-hybridization regimes (Figs. S3(a) and S3(b), respectively).

Obviously, the transmission is suppressed for |ω| > D, but in the limit D ≫ t, also the

high-energy features would be recovered. The situation is more complex in the AF state,
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because the QI antinote is found at a finite frequency |ωQI
σ |∝〈Sz〉. In particular, if the edge

of the Bethe DOS, where ℜΣL/R(ω) is the largest, is located in proximity of ωQI
σ , one can

observe some deviations from the WBL, as in Fig. S3(c) for D/t = 0.5. However, even in

this case, which is the most unfavorable for the realization of the QI assisted spin-filtering

effect, the spin polarization ζ(ω) = (T↑ − T↓)/(T↑ + T↓) is found to be suppressed at most

about 30%. This makes the efficiency of the device suboptimal but it does not destroy its

spin-filtering properties.

We can conclude that the details of the DOS of the leads is generally irrelavant to the

realization of the QI assisted spin-filtering effect. Together with the symmetry analysis that

we discussed in the manuscript, these numerical calculations confirm that the phenomenon

is a robust features of graphene junctions, and sheds promising lights on its experimental

realization.

Effects of symmetry breaking on the destructive QI

In the manuscript we show that the QI features of graphene nanostructures can be under-

stood in terms of the symmetries of the Hamiltonian, which establish their robustness and

generality. However, the existence of QI features does not rely on those symmetries, and

that indeed the QI antiresonances appear in the transmission even when the symmetries are

lifted. Here we show that the QI properties survive even if those symmetries are broken. We

focus on two case: i) when the particle-hole symmetry is broken by the presence of hoppings

beyond nearest neighbors (NN), and ii) when the chiral symmetry of graphene is broken by

the presence of a substrate.

Structural electron-hole asymmetry: t′ 6=0

As a matter of fact, in actual graphene nanostructures the particle-hole symmetry of NN

hopping tight-binding Hamiltonian, as considered above, is expected to be broken by hopping
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Figure S4: (a-b) Transmisson coefficient in the PM and AF state for different values of
the particle-hole symmetry breaking t′/t for Γ/t = 0.02 and U/t = 3.75. (c) Shift of the
QI antinode ωQI as a function t′/t. (d) While NN hopping t connect atoms from different
sublattices (AB), the next-NN hopping t′ connects atoms within the same sublattice (AA or
BB).

processes beyond NN or by lattice deformations. Here we consider the case in which we

include next-NN hopping t′ 6=0 in the tight-binding Hamiltonian.

In Fig. S4(a) we show explicitly that t′ does not destroy the QI antiresonance, but it shifts

the frequency ωQI (at which the destructive interference takes place) at finite energy. We

can understand this result observing that t′ shifts the DOS, so that the chemical potential

no longer lies in the middle of the gap, but slightly below (for positive t′/t). However, if the

spectrum at t′=0 was symmetric around ω=0, it still possesses a near symmetry around a

shifted energy ωQI 6=0. In particular, here ωQI ∝ t′/t. This, in turn, results in a zero of the

Green’s function at the same energy, away from the Fermi level.

It is also important to notice that a relatively small next-NN hopping, besides driving

the system away from half-filling, does not destroy the ordered AF state due to the presence

of the quantum confinement gap. In the AF state we observe that T↑(ω) and T↓(ω) are split

around the antiresonance energy ωQI , as shown in Fig. S4(b) for t′/t=0.05.

While a finite t′ is a simple conceptual handle to tune the position of the QI antiresonance,

this parameter is not easily tuned in actual materials. Similar effects can be obtained using

deformations of the lattice structure induced by applying, e.g., strain. The possibility to

mechanically control QI has been recently demonstrated experimentally for π-stacked dimers

exhibiting destructive QI.9 Yet, in complex nanostructures it may be difficult to achieve a
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precise control over the local lattice deformations and ultimately on the position of the QI

antiresonance.

Chiral symmetry breaking: graphene/h-BN(0001)

Upon deposition of graphene on hexagonal boron-nitride (h-BN) the two inequivalent A and

B sublattices experience a different chemical environment due to asymmetric absorption on

the substrate. This effect can be modeled by the following substrate Hamiltonian10

Hsub = −
∑

i

(

ǫAniA + ǫBniB

)

, (4)

where niA(B) is the electron density operators at site i on sublattice A(B) and ǫA=−ǫB = ǫ

is the parameter that measures the degree of chiral symmetry-breaking.

The term in Eq. (4) induces a charge modulation between the two sublattices, as the oc-

cupation of all sites deviates from half-filling. This is quantified by the charge-density wave

order parameter ∆CDW = N−1
C

∑

i

(

niA−niB

)

, with NC the number of C atoms in the nanos-

tructure. As a consequence, also the local magnetic moments 〈Sz
i 〉 are partially quenced,

and the staggered magnetization 〈Sz〉 =N−1
C

∑

i

(

〈Sz
iA〉 − 〈Sz

iB〉
)

is reduced. However, the

AF pattern of the magnetization is nevertheless preserved.

In Fig. S5 we show the amplitude of ∆CDW and 〈Sz〉 for the isolated 3N nanoflake at

U/t = 3.75, as a function of the hybridization between the nanoflake and the substrate.

In order to compare the effects of the chiral symmetry-breaking field ǫ in all contact

configurations, in Fig. S6 we show the ortho, meta, and para transmission coefficient Tσ(ω)

of the 3N nanoflake device. In general, for the ortho and para configurations (which do not

display destructive QI) the polarization in the proximity of the Fermi level is lower than in

the meta configuration. For each spin polarization σ, the transmission coefficient in the ortho

and para configurations fulfills the condition Tσ(ω) = Tσ(−ω) (while the substrate breaks

the relation between spin ↑ and ↓). As a result, there is a finite ∆T (0) = T↑(0)− T↓(0) but
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Figure S5: Amplitde of the charge-density wave ∆CDW order parameter and the staggered
magnetization 〈Sz〉 for the isolated 3N nanoflake at U/t = 3.75.
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the local minimum of the transmission is pinned at the Fermi level. Eventually, this is the

reason why the corresponding spin-current Js is lower than in meta configuration.

Therefore, we can conclude that the suppression of the transmission in one spin channel,

due to spin-resolved destructive QI achieved in the meta configuration, is fundamental in

order to obtain an efficient spin filter. In particular, QI-assisted spin-filtering is more effective

than any polarization induced in the ortho or para configurations.
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