## Supporting information

# Isomeric broadening of $\mathrm{C}_{60}{ }^{+}$electronic excitation in helium droplets: experiments meet theory 

Alexander Kaiser, Johannes Postler, Milan Ončák, Martin Kuhn, Michael Renzler, Steffen Spieler, Malcolm Simpson, Michael Gatchell, Martin K. Beyer, Roland Wester, Francesco A. Gianturco, Paul Scheier*<br>Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria<br>Florent Calvo<br>University Grenoble Aples, CNRS, LIPHY, F-38000 Grenoble, France<br>Ersin Yurtsever<br>Koç University, Chemistry Department, Rumeli Feneri Yolu, Sariyer 34450, Istanbul, Turkey

*Corresponding author: paul.scheier@uibk.ac.at

## Details of the CASSCF calculation

The $\mathrm{C}_{60}{ }^{+}$ion was treated within the $C_{2 h}$ symmetry subgroup of its full symmetry group $I_{h}$. Only excitation within up to 14 orbitals that are fully occupied in $\mathrm{C}_{60}$ were considered as preliminary calculations showed that excitation into unoccupied orbitals lie higher in energy.

The ground state of $\mathrm{C}_{60}{ }^{+}$is five-fold degenerate, with state symmetry of $3 \times A_{u}$ and $2 \times B_{u}$, corresponding to the $h_{u}$ representation in $I_{h}$ (five-fold degenerated state, antisymmetric with respect to the inversion operation). The first excited state lies at 1.68 eV and is also five-fold degenerate, with state symmetry of $3 \times A_{g}$ and $2 \times B_{g}$, corresponding to the $h_{g}$ representation in $I_{h}$.

A second excited state can be found at 2.04 eV , it is four-fold degenerate and composed of $2 \times A_{g}$ and $2 \times B_{g}$ states, corresponding to the $g_{g}$ representation in $I_{h}$ (as calculated at the $\operatorname{CASSCF}(27,14)$ level of theory, i.e. including $5 \times h_{u}, 5 \times h_{g}$, and $4 \times g_{g}$ orbitals into the active space).

Excitation energies are shifted by about $0.4-0.5 \mathrm{eV}$ from the experimental values ${ }^{1,2}$ due to the missing dynamic electron correlation energy. Both $h_{u}-h_{g}$ and $h_{u}-g_{g}$ excitations are allowed.
(1) Cataldo, F.; Iglesias-Groth, S.; Manchado, A.; Fullerenes, Nanotubes, and Carbon Nanostructures 20, 2012, 565.
(2) Kato, T.; Kodama, T.; Shida, T.; Nakagawa, T.; Matsui, Y.; Suzuki, S.; Shiromaru, H.; Yamauchi, K.; Achiba, Y.; Chem. Phys. Lett. 180, 1991, 446.


Figure 1 S . Positions of He atoms along a $\mathrm{He}_{12} \mathrm{C}_{60}{ }^{+}$PIMD trajectory at $\mathrm{T}=5 \mathrm{~K}$.


Figure 2S. PIMD trajectories of He atoms in a 2D projection for a calculation of $\mathrm{He}_{12} \mathrm{C}_{60}{ }^{+}$. The helium avoids carbon positions (gray dots) and prefers hexagonal (6 pointed star) or pentagonal (5 pointed star) binding positions. Helium can change from one binding site to another, an effect which can be due either to kinetic energy values overcoming the small barrier or to quantum tunneling of the He atom between the two sites.

Table 1S. Parameters (in a.u.) of the He-C interaction potential for $\mathrm{He}_{n} \mathrm{C}_{60}{ }^{+}$PIMD simulations.

| A | 92.15 |
| :--- | :--- |
| b | 2.1145 |
| $\mathrm{C}_{6}$ | 10.99 |
| $\mathrm{C}_{8}$ | 0.105 |
| $\alpha\left(\mathrm{a}_{0} \wedge 3\right)$ | 1.383 |

