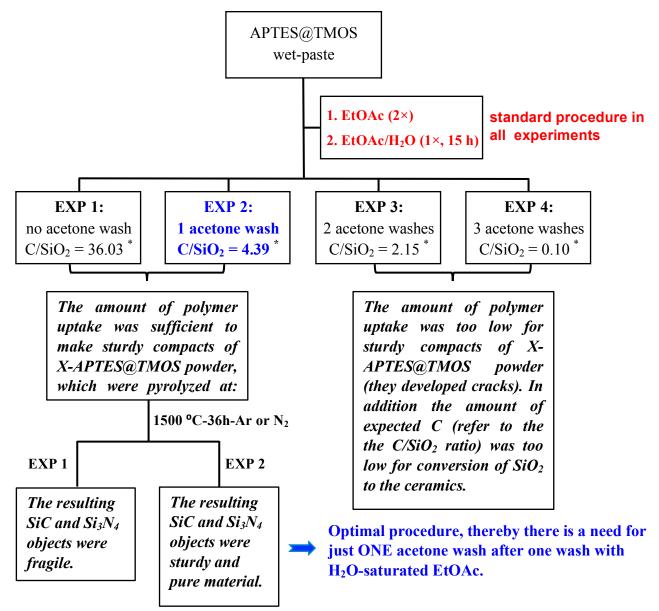
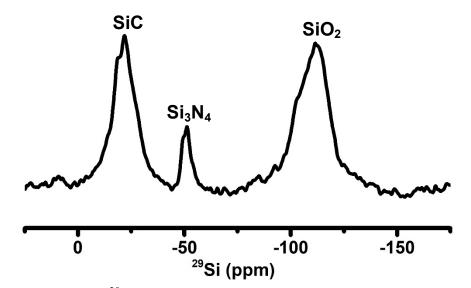
Sturdy, Monolithic SiC and Si₃N₄ Aerogels from Compressed Polymer-Crosslinked Silica Xerogel Powders

Parwani M. Rewatkar, Tahereh Taghvaee, Adnan Malik Saeed, Suraj Donthula, Chandana Mandal, Naveen Chandrasekaran, Theodora Leventis,[#] T. K. Shruthi,[†] Chariklia Sotiriou-Leventis^{*} and Nicholas Leventis^{*}

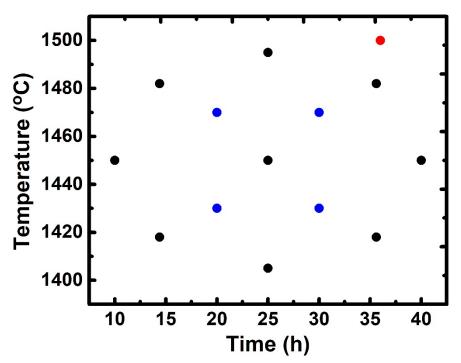

Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, U.S.A. [#]Summer student via the ARO High School Student Apprenticeship Program. [†]S. N. Bose Scholar. ^{*}Correspondence: Tel.: 573-341-4391 (NL) 573-341-4353 (CSL). E-mail: <u>leventis@mst.edu</u>, <u>cslevent@mst.edu</u>

Supporting Information

Index		Page No. S.1
Appendix I.	Optimization of washing procedures for an optimal amount of carbon available for carbothermal reduction	S.2
Appendix II.	Optimization of pyrolytic conditions for converting compressed silica compacts to Si_3N_4 aerogels	S.3
Appendix III.	Solid-state ²⁹ Si NMR of APTES@TMOS and of X-APTES@TMOS under two different acquisition conditions	S.6


Appendix I. Optimization of washing procedures for an optimal amount of carbon available for carbothermal reduction

Scheme S.1. Optimization of washing procedure for optimal polymer uptake during crosslinking, and thereby optimal amount of carbon produced and available for carbothermal reduction



* This is the amount of carbon relative to silica that is expected based on the carbonization yield of TIPM-derived polyurea (56% w/w, by pyrolysis at 800 °C/Ar) and the amount of polyurea in the resulting X-APTES@TMOS powder determined with TGA (as in Figure 3 of the main article.)

Appendix II. Optimization of pyrolytic conditions for converting compressed silica compacts to Si₃N₄ aerogels

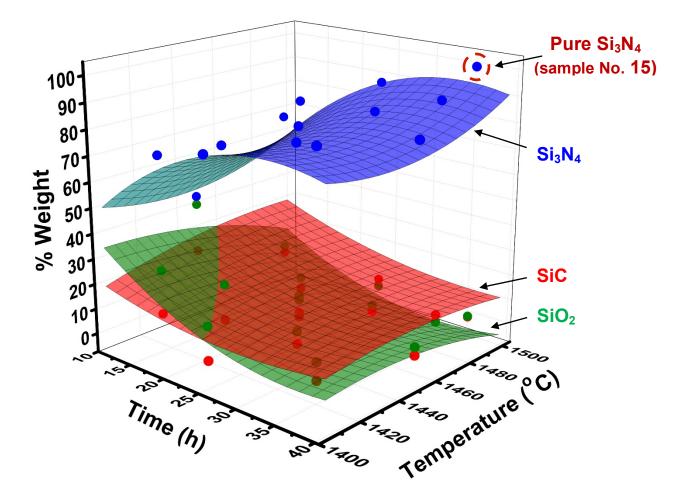

Figure S.1. Solid-state MAS ²⁹Si NMR of a mixture consisting of SiC:Si₃N₄:SiO₂ in a ratio of 1:1:1 mol:mol, using a ZrO rotor spun at 7kHz and direct polarization (zg pulse sequence). <u>Acquisition parameters</u>: number of scans: 16384; relaxation delay: 5 sec; acquisition time: 0.0129 sec; power level for pulse: 250 W. <u>Integrated areas</u>: SiC: 39.02; Si₃N₄: 7.77; SiO₂: 53.02.

Figure S.2. Samples prepared in order to identify the optimal conditions (pyrolysis temperature and time) for Si_3N_4 . <u>Black points</u>: samples suggested by a Central Composite Rotatable Design (CCRD) statistical method. <u>Blue points</u>: extra points added to the CCRD design in order to increase confidence. <u>Red point</u>: conditions predicted to produce pure Si_3N_4 .

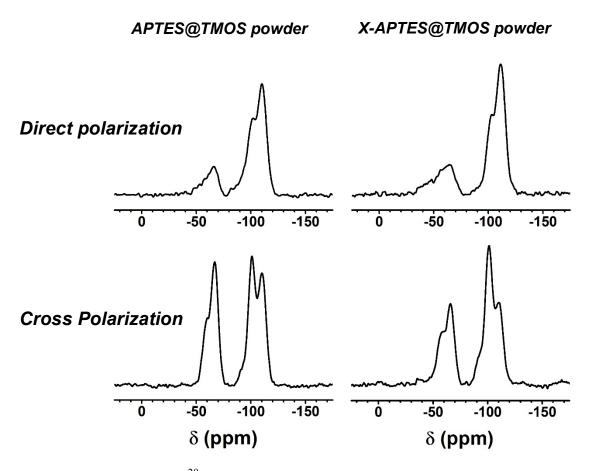
Table S.1. Quantitative analysis using solid-state ²⁹Si NMR under the conditions indicated in the legend of Figure S.1 of samples prepared by pyrolysis of X-APTES@TMOS compacts according to the conditions of Figure S.2.

Sample	Pyrolysis Time - Temperature	Quantitative Analysis from NMR (Lorentzian fitting)			
		wt% Si ₃ N ₄	wt% SiC	wt% SiO ₂	Mole Ratio [Si ₃ N ₄] : [SiC] : [SiO ₂]
1	10 h - 1450 °C	42.15	19.04	38.81	1 : 1.58 : 2.15
2	14.39 h - 1418 °C	69.38	6.55	24.07	1:0.33:0.81
3	14.39 h – 1482 °C	71.14	13.02	15.84	1 : 0.64 : 0.52
4	20 h - 1430 °C	74.24	5.73	20.03	1 : 0.27 : 0.63
5	20 h – 1470 °C	83.14	6.18	10.68	1:0.26:0.30
6	25 h – 1405 °C	79.83	3.42	16.75	1 : 0.15 : 0.49
7	25 h – 1450 °C	80.37	5.52	14.11	1 : 0.24 : 0.41
8	25 h – 1450 °C	80.47	7.13	12.40	1:0.31:0.36
9	25 h - 1495 °C	88.72	7.10	4.18	1:0.28:0.11
10	30 h - 1430 °C	81.88	6.55	11.57	1:0.28:0.33
11	30 h – 1470 °C	84.96	6.31	8.73	1:0.26:0.24
12	35.61 h – 1418 °C	86.97	2.98	10.05	1:0.12:0.27
13	35.61 h – 1482 °C	90.10	6.43	3.47	1:0.25:0.09
14	40 h – 1450 °C	85.06	5.83	9.11	1:0.24:0.25
15	36 h – 1500 °C	99.68	0	0.32	1:0.00:0.007

Figure S.3. Fitting the weight percent data for SiC, Si₃N₄ and unreacted SiO₂ (from Table S.1) in samples produced by pyrolysis of X-APTES@TMOS compacts for the time periods (*t*) and at the specific temperatures (θ) as indicated. The fitting equations are:

$$\% SiC = (0.0221)t^{2} + (-0.0014)\theta^{2} + (-0.0042)t\theta + (4.669)t + (4.307)\theta + (-3199)$$

$$R^{2} = 0.82904$$


$$\% Si_{3}N_{4} = (-0.0636)t^{2} + 0.0034)\theta^{2} + (0.0011)t\theta + (2.735)t + (-9.807)\theta + (7078)$$

$$R^{2} = 0.91297$$

$$\% SiO_{2} = (0.0425)t^{2} + (-0.0029)\theta^{2} + (0.0031)t\theta + (-7.394)t + (5.500)\theta + (-3780)$$

$$R^{2} = 0.93479$$

Appendix III. Solid-state ²⁹Si NMR of APTES@TMOS and of X-APTES@TMOS under two different acquisition conditions

Figure S.4. Solid-state ²⁹Si NMR data for the two materials as indicated taken using two different modes: Direct and cross-polarization (CP). Note the enhancement of Q3 and T2 under CP, and the even higher enhancement of Q3 relative to Q4 after crosslinking, signifying that the TIPM-derived crosslinking polymer (polyurea) laches not only on APTES-provided $-NH_2$ groups, but also on -OH groups of Q3 positions.