

Jingchao Chen, $*^{\dagger}$ Lingling Zou, † Chaoyuan Zeng, † Yongyun Zhou, † and Baomin Fan $*^{\dagger \ddagger}$

Supporting Information

Table of Contents

A: General Information	S2
B: Procedure of the Reactions	S2
C: Characterization Data of Products	\$3
D: NMR Spectra of Products	S10
E: HPLC Spectra of Products	\$31
F: X-ray Crystallography of Compound 3aa	S52

A: General Information

The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). Common substrates and reagents were obtained from commercial suppliers and used without further purification. Anhydrous toluene and 1,4-dioxane were distilled from sodium benzophenone ketyl prior to use. ¹H NMR and ¹³C NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. CDCl₃ was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. The enantiomeric excesses were determined by Agilent 1260 Series HPLC using Daicel AD-H $\$ AS-H $\$ and OD-H chiral columns eluted with a mixture of isopropyl alcohol and hexane. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution magnetic-sector mass-analyzed instrument, operating in an electron impact (EI) mode. Column chromatography was performed with silica gel (200 - 300 mesh) with petroleum ether and ethyl acetate as eluents.

B: Procedure for the reactions

Typical procedure for the asymmetric ring opening reactions: Rh(COD)₂SbF₆ (28 mg, 0.05 mmol), (*R*)-DifluroPHOS (41 mg, 0.06 mmol) and 1,4-dioxane (5.0 mL) were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then a solution of azabenzonorbornadiene **1a** (243 mg, 1.0 mmol) in 1,4-dioxane (5 mL) was added, and the mixture was stirred for additional 10 min. Then *N*,*N*-dimethylaniline **2a** (0.65 mL, 5 mmol) was added, and the mixture was stirred at 80 °C under argon atmosphere with TLC monitoring until the complete consumption of **1a**. The solvent was removed by reduced pressure and the residue was purified by silica gel column chromatography to provide the desired product **3aa** (280 mg, 77% yield). The enantiomeric excess value of the product was determined by HPLC on a chiral stationary phase (92% *ee*).

C: Characterization Data of Products

tert-butyl ((1R,2R)-2-(4-(dimethylamino)phenyl)-1,2-dihydronaphthalen-1-yl) carbamate (3aa):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 56 mg, 77% yield, 92% *ee*. Mp 136 - 139 °C. $[\alpha]_D^{21}$ = +368.8 (c= 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.24 - 7.06 (m, 6H), 6.67 - 6.59 (m, 3H), 6.05 (dd, *J* = 8.9 Hz, 4.8 Hz, 1H), 4.85 (s, 2H), 3.76 (s, 1H), 2.86 (s, 6H), 1.41 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.1, 149.7, 133.7, 133.1, 130.3, 128.9, 128.7, 128.3, 128.0, 127.6, 127.5, 126.4, 112.9, 79.4, 55.2, 46.5, 40.8, 28.5. HRMS calcd for C₂₃H₂₈N₂O₂ [M]⁺: 364.2151. Found: 364.2152. The *ee* of **3aa** was determined by HPLC analysis using a Daicel Chiralcel AS-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; *t*_{major} = 11.5 min, *t*_{minor} = 15.0 min.

tert-butyl ((1R,2R)-2-(4-(dimethylamino)-2-methylphenyl)-1,2-dihydronaphthalen-1-yl)carbamate

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 51 mg, 68% yield, 87% *ee*. Mp 99 – 102 °C. $[\alpha]_D^{21}$ = +451.2 (c = 0.93, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.12 (m, 4H), 6.76 (d, *J* = 8.5 Hz, 1H), 6.68 (d, *J* = 9.6 Hz, 1H), 6.57 - 6.56 (m, 1H), 6.35 (d, *J* = 8.2 Hz, 1H), 5.99 (dd, *J*= 9.3, 5.1 Hz, 1H), 4.92 - 4.82 (m, 2H), 3.93 (s, 1H), 2.84 (s, 6H), 2.50 (s, 3H), 1.40 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.0, 149.6, 137.4, 134.2, 133.0, 130.6, 128.7, 128.2, 128.0, 127.6, 126.4, 125.1, 115.3, 110.4, 79.3, 53.7, 43.2, 40.8, 28.5, 20.5. HRMS calcd for C₂₄H₃₀N₂O₂ [M]⁺: 378.2307. Found: 378.2310. The *ee* of **3ab** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; *t*_{major} = 12.4 min, *t*_{minor} = 14.0 min.

tert-butyl ((1R,2R)-2-(4-(dimethylamino)-2-methoxyphenyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ac):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 65 mg, 83% yield, 93% *ee*. Mp 98 – 101 °C. $[\alpha]_D^{21}$ = +270.8 (c = 1.31, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 7.2 Hz, 1H), 7.24 - 7.17 (m, 2H), 7.12-7.10 (m, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.62 (d, *J* = 9.5 Hz, 1H), 6.28 - 6.27 (m, 1H), 6.23 (d, *J* = 8.4 Hz, 1H), 6.02 (dd, *J* = 9.3, 3.6 Hz, 1H), 5.04 - 4.92 (m, 2H), 4.12 - 4.10 (m, 1H), 3.87 (s, 3H), 2.91 (s, 6H), 1.36 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 158.1, 155.6, 151.2, 135.9, 133.2, 131.3, 128.9, 127.8, 127.7, 126.9, 126.3, 117.0, 105.1, 96.4, 79.0, 55.4, 54.6, 40.9, 39.8, 28.5. HRMS calcd for C₂₄H₃₀N₂O₃ [M]⁺: 394.2256. Found: 394.2248. The *ee* of **3ac** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1mL/min, 254 nm; *t*_{minor} = 13.6 min, *t*_{major} = 11.4 min.

tert-butyl ((1R,2R)-2-(4-(dimethylamino)-3-methoxyphenyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ad):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 21 mg, 27% yield, 88% *ee*. Mp 44 – 47 °C. $[\alpha]_D^{22}$ = +274.9 (c = 0.43, CH₂Cl₂). ¹H

NMR (400 MHz, CDCl₃) δ 7.27 - 7.13 (m, 4H), 6.80 - 6.66 (m, 4H), 6.06 (dd, *J* = 9.5, 4.8 Hz, 1H), 4.92 - 4.84 (m, 2H), 3.76 (s, 4H), 2.71 (s, 6H), 1.40 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.1, 152.3, 141.3, 134.3, 134.0, 133.1, 130.2, 128.3, 128.2, 127.7, 126.4, 120.3, 118.1, 111.0, 79.5, 55.3, 55.0, 47.3, 43.5, 28.5. HRMS calcd for C₂₄H₃₀N₂O₃ [M]⁺: 394.2256. Found: 394.2252. The *ee* of **3ad** was determined by HPLC analysis using a Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; *t*_{maior} = 11.5 min, *t*_{minor} = 14.4 min.

tert-butyl ((1R,2R)-2-(2-chloro-4-(dimethylamino)phenyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ae):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 32 mg, 40% yield, 77% *ee*. Mp 134 - 137 °C. $[\alpha]_D^{22}$ = +222.9 (c = 0.62, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.32 - 7.30 (m,1H), 7.25 - 7.18 (m, 2H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.03 (d, *J* = 8.6 Hz, 1H), 6.71 - 6.70 (m, 1H), 6.64 (dd, *J* = 9.6, 1.6 Hz, 1H), 6.49 (dd, *J* = 8.6, 2.0 Hz, 1H), 5.98 (dd, *J* = 9.5, 3.9 Hz, 1H), 5.05 - 4.92 (m, 2H), 4.19 (s, 1H), 2.88 (s, 6H), 1.36 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.3, 150.4, 135.2, 135.0, 133.0, 130.3, 129.4, 128.1, 128.0, 127.0, 126.5, 125.0, 113.1, 111.5, 79.35, 54.2, 43.4, 40.5, 28.5. HRMS calcd for C₂₃H₂₇ClN₂O₂ [M]⁺: 398.1761. Found: 398.1756. The *ee* of **3ae** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; *t*_{maior} = 10.2 min, *t*_{minor} = 7.7 min.

tert-butyl ((1'R,2'R)-4-(dimethylamino)-1',2'-dihydro-[1,2'-binaphthalen]-1'-yl) carbamate (3af):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 50 mg, 60% yield, 91% *ee*. Mp 144 – 146 °C. $[\alpha]_D^{22}$ = +104.5 (c = 0.77, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.5 Hz, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 7.65 – 7.50 (m, 2H), 7.29 – 7.15 (m, 5H), 6.86 (d, *J* = 7.8 Hz, 1H), 6.80 (d, *J* = 9.6 Hz, 1H), 6.12 (dd, *J* = 9.6, 4.8 Hz, 1H), 5.11 (dd, *J* = 8.3, 4.6 Hz, 1H), 4.96 – 4.94 (m, 1H), 4.61 (s, 1H), 2.82 (s, 6H), 1.39 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.2, 150.2, 134.5, 133.1, 132.8, 130.3, 129.5, 128.9, 128.5, 128.3, 128.2, 126.6, 126.3, 125.2, 125.0, 124.9, 124.3, 113.6, 79.4, 53.8, 45.4, 42.8, 28.5. HRMS calcd for C₂₇H₃₀N₂O₂ [M]⁺: 414.2307. Found: 414.2314. The *ee* of **3af** was determined by HPLC analysis using two Daicel Chiralcel OD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, 254 nm; *t*_{major} = 25.0 min, *t*_{minor} = 28.1 min.

tert-butyl ((1R,2R)-2-(4-(diethylamino)phenyl)-1,2-dihydronaphthalen-1-yl) carbamate (3ag):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 67 mg, 85% yield, 92% *ee*. Mp 126 - 128 °C. $[\alpha]_D^{21}$ = +449.5 (c = 1.38, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.11 (m, 4H), 7.03 (d, *J* = 8.3 Hz, 2H), 6.65 (d, *J* = 9.5 Hz, 1H), 6.53 (d, *J* = 8.0 Hz, 2H), 6.05 (dd, *J* = 9.2, 4.9 Hz, 1H), 4.85 (s, 2H), 3.73 (s, 1H), 3.27 (dd, *J* = 13.4, 6.6 Hz, 4H), 1.41 (s, 9H), 1.09 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.1, 146.9, 133.9, 133.2, 130.5, 129.1, 128.7, 128.2, 128.0, 127.3, 126.4, 112.0, 79.4, 55.2, 46.6, 44.4, 28.5, 12.7. HRMS calcd forC₂₅H₃₂N₂O₂ [M]⁺+H:

393.2542. Found: 393.2538. The *ee* of **3ag** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5mL/min, 254 nm; t_{major} = 13.7 min, t_{minor} = 11.4 min.

tert-butyl ((1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-1,2-dihydronaphthalen-1-yl) carbamate (3ah):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 67 mg, 83% yield, 91% *ee*. Mp 104 – 107 °C. $[\alpha]_D^{21}$ = +463.0 (c = 1.24, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.23 - 7.12 (m, 4H), 6.73 (d, *J* = 8.6 Hz, 1H), 6.67 (d, *J* = 9.6 Hz, 1H), 6.49 (s, 1H), 6.28 (d, *J* = 8.1 Hz, 1H), 6.00 (dd, *J* = 9.3, 5.1 Hz, 1H), 4.92 - 4.83 (m, 2H), 3.91 (s, 1H), 3.25 (dd, *J* = 13.8, 6.8 Hz, 4H), 2.49 (s, 3H), 1.40 (s, 9H), 1.09 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.0, 146.7, 137.5, 134.3, 133.0, 130.8, 128.7, 128.5, 128.1, 128.0, 127.4, 126.3, 123.7, 114.1, 109.4, 79.2, 53.7, 44.3, 43.2, 28.5, 20.6, 12.7. HRMS calcd for C₂₆H₃₄N₂O₂ [M]⁺: 406.2620. Found: 406.2616. The *ee* of **3ah** was determined by HPLC analysis using a Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, 254 nm; *t*_{major} = 12.3 min, *t*_{minor} = 14.3 min.

((1R,2R)-2-(4-(piperidin-1-yl)phenyl)-1,2-dihydronaphthalen-1-yl)carbamate (3ai):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 39 mg, 48% yield, 85% *ee*. Mp 50 – 53 °C. $[\alpha]_D^{22}$ = +184.1 (c = 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.25 - 7.07 (m, 6H), 6.78 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 9.6, 1H), 6.04 (dd, *J* = 9.5, 5.0 Hz, 1H), 4.84 (s, 2H), 3.77 (s, 1H), 3.6 (t, *J* = 5.2 Hz, 4H), 1.69 - 1.63 (m, 4H), 1.55 - 1.41 (m, 2H), 1.41 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.1, 151.2, 133.7, 133.0, 130.0, 130.1, 128.8, 128.5, 128.2, 128.0, 127.5, 126.3, 116.6, 79.3, 55.1, 50.7, 46.5, 28.4, 26.0, 24.3. HRMS calcd for C₂₆H₃₂N₂O₂ [M]⁺: 404.2464. Found: 404.2462. The *ee* of **3ai** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH= 90/10, 0.5 mL/min, 254 nm; *t*_{major} = 11.7 min, *t*_{minor} = 10.4 min.

tert-butyl ((1R,2R)-2-(4-((2-hydroxyethyl)(methyl)amino)phenyl)-1,2dihydronaphthalen-1-yl)carbamate (3aj):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 55 mg, 70% yield, 92% *ee*. Mp 120 – 123 °C. $[\alpha]_D^{22}$ = +197.6 (c = 1.01, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) & 7.25 - 7.20 (m, 3H), 7.13 (d, *J* = 7.3 Hz, 1H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.55 (dd, *J* = 9.6, 1H), 6.21 - 6.06 (m, 4H), 5.09 - 5.05 (m, 1H), 4.70 (d, *J* = 8.7 Hz, 1H), 4.30 - 4.27 (m, 1H), 3.75 (s, 1H), 2.92 (s, 6H), 1.45 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): & 155.1, 149.2, 133.7, 133.1, 130.2, 129.1, 128.7, 128.5, 128.3, 128.1, 127.6, 126.4, 113.4, 79.5, 60.1, 55.7, 55.2, 46.5, 39.0, 28.5. HRMS calcd for C₂₄H₃₀N₂O₃ [M]⁺: 394.2256. Found: 394.2251. The *ee* of **3ak** was determined by HPLC analysis using a Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH= 90/10, 1 mL/min, 254 nm; *t*_{major} = 11.0 min, *t*_{minor} = 14.8 min.

tert-butyl ((1R,2R)-2-(1H-indol-3-yl)-1,2-dihydronaphthalen-1-yl)carbamate (3ak)¹:

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 60 mg, 83% yield, 94% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.88 - 7.97 (m, 2H), 7.28 - 7.30 (m, 1H), 7.13 - 7.26 (m, 7H), 6.78 (s, 1H), 6.67 (d, *J* = 9.5 Hz, 1H), 6.17 - 6.20 (m, 1H), 5.08 - 5.11 (m, 1H), 4.92 (d, *J* = 8.1 Hz, 1H), 4.22 (s, 1H), 1.43 (s, 9H). The *ee* of **3ak** was determined by HPLC analysis using two Daicel Chiralcel OJ-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; *t*_{major} = 17.1 min, *t*_{minor} = 28.4 min.

tert-butyl ((1R,2R)-6,7-dibromo-2-(4-(diethylamino)-2-methylphenyl)-1,2dihydronaphthalen-1-yl)carbamate (3bh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 73 mg, 65% yield, 91% *ee*. Mp 110 - 113 °C. $[\alpha]_D^{22} = +278.4$ (c = 1.01, CHCl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.39 (s, 1H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.58 (d, *J* = 9.5 Hz, 1H), 6.49 (s, 1H), 6.30 (d, *J* = 7.8 Hz, 1H), 6.08 (dd, *J* = 9.0, 4.8 Hz, 1H), 4.88 - 4.77 (m, 2H), 3.90 (s, 1H), 3.28 (q, *J* = 6.9 Hz, 4H), 2.45 (s, 3H), 1.40 (s, 9H), 1.11 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100MHz): δ 154.7, 146.8, 137.5, 135.1, 133.7, 133.5, 132.8, 130.8, 128.3, 125.6, 124.0, 123.1, 122.4, 114.0, 109.3, 79.7, 52.9, 44.2, 43.0, 28.4, 20.5, 12.7. HRMS calcd for C₂₆H₃₂Br₂N₂O₂ [M]⁺: 562.0831. Found: 562.0825. The *ee* of **3bh** was determined by HPLC analysis using a Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 95/5, 0.5 mL/min, 254 nm; *t*_{major} = 10.0 min, *t*_{minor} = 13.2 min.

tert-butyl ((1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-6,7-dimethyl-1,2dihydronaphthalen-1-yl)carbamate (3ch):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 70 mg, 81% yield, 92% *ee*. Mp 99 – 102 °C. $[\alpha]_D^{22}$ = +304.5 (c = 1.02, CHCl₂). ¹H NMR (400 MHz, CDCl₃) & 6.95 - 6.91 (m, 2H), 6.71 (d, *J* = 8.6 Hz, 1H), 6.62 (d, *J* = 9.5 Hz, 1H), 6.49 (s, 1H), 6.28 - 6.26 (m, 1H), 5.92 (dd, *J* = 9.3, 5.3 Hz, 1H), 4.88 - 4.75 (m, 2H), 3.87 (s, 1H), 3.25 (q, *J* = 6.4 Hz, 4H), 2.49 (s, 3H), 2.23 - 2.18 (m, 6H), 1.40 (s, 9H), 1.10 - 1.07 (m, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 154.8, 146.5, 137.5, 136.2, 136.2, 131.5, 130.6, 130.2, 129.4, 128.5, 127.6, 127.2, 123.8, 114.0, 109.3, 79.0, 53.3, 44.2, 43.3, 28.4, 20.5, 19.6, 19.5, 12.7. HRMS calcd for C₂₈H₃₈N₂O₂ [M]⁺: 434.2933. Found: 434.2938. The *ee* of **3ch** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5mL/min, 254 nm; t_{major} = 8.1 min, t_{minor} = 10.5 min.

N-((1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-1,2-dihydronaphthalen-1-yl)-4-methylbenzenesulfonamide (3dh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 82 mg, 89% yield, 75% *ee*. Mp 88 – 91 °C. $[\alpha]_D^{22}$ = +347.6 (c = 1.05, CHCl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.2 Hz, 2H), 7.24 - 7.18 (m, 2H), 7.11 - 7.10 (m, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 9.6 Hz, 1H), 6.51 - 6.49 (m, 2H), 6.43 (d, *J* = 2.6 Hz, 1H), 6.14 (dd, *J* = 8.7, 2.7 Hz, 1H), 5.98 (dd, *J* = 9.5, 5.7 Hz, 1H), 4.88 (d, *J* = 8.1 Hz, 1H), 4.32 (d, *J* = 8.5 Hz, 1H), 4.05 (d, *J* = 4.2, Hz, 1H), 3.23 (q, *J* = 7.0 Hz, 4H), 2.42 (s,

3H), 2.38 (s, 3H), 1.07 (t, J = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 146.7, 143.2, 138.1, 137.5, 132.9, 132.2, 130.1, 129.6, 128.8, 128.7, 128.4, 127.8, 127.2, 126.5, 122.1, 113.7, 109.1, 56.6, 44.1, 43.1, 21.6, 20.5, 12.7. HRMS calcd for C₂₈H₃₂N₂O₂S [M]⁺: 460.2184. Found: 460.2189. The *ee* of **3dh** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; $t_{major} = 11.2$ min, $t_{minor} = 13.6$ min.

benzyl ((1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-1,2-dihydronaphthalen-1-yl) carbamate (3eh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 62 mg, 70% yield, 84% *ee*. Mp 106 - 109 °C. $[\alpha]_D^{22}$ = +254.3 (c = 0.99, CHCl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.26 (m, 6H), 7.21 - 7.16 (m, 3H), 6.71 (dd, *J* = 9.4, 5.1 Hz, 2H), 6.53 (s, 1H), 6.28 - 6.26 (m, 1H), 6.02 (dd, *J* = 9.4, 5.4 Hz, 1H), 5.20 (d, *J* = 8.7 Hz, 1H), 5.11 (s, 2H), 4.91 - 4.89 (m, 1H), 4.00 (s, 1H), 3.28 (q, *J* = 6.9 Hz, 4H), 2.54 (s, 3H), 1.11 (t, *J* = 6.9 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.5, 146.7, 137.6, 136.5, 133.5, 132.9, 130.3, 129.2, 128.6, 128.5, 128.4, 128.2, 128.1, 127.5, 126.5, 122.9, 114.1, 109.3, 66.8, 54.1, 44.2, 42.8, 20.6, 12.8. HRMS calcd for C₂₉H₃₂N₂O₂ [M]⁺: 440.2464. Found: 440.2467. The *ee* of **3eh** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH =90/10, 1mL/min, 254 nm; *t*_{major} = 8.1 min, *t*_{minor} = 10.1 min.

(1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-1,2-dihydronaphthalen-1-ol (3fh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 47 mg, 77% yield, 93% *ee*. Mp 85 – 88 °C. $[\alpha]_D^{22}$ = -374.8 (c = 0.92, CHCl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.2 Hz, 1H), 7.29 - 7.20 (m, 2H), 7.14 (d, *J* = 7.2 Hz, 1H), 6.90 (d, *J* = 8.6 Hz, 1H), 6.62 (d, *J* = 9.6 Hz, 1H), 6.51 (s, 1H), 6.40 (d, *J* = 8.3 Hz, 1H), 5.97 (dd, *J* = 9.6, 3.8 Hz, 1H), 4.80 (d, *J* = 7.0 Hz, 1H), 3.99 (s, 1H), 3.29 (q, *J* = 6.9 Hz, 4H), 2.41 (s, 3H), 2.03 (s, 1H), 1.12 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 146.7, 137.8, 135.9, 132.9, 131.3, 128.7, 128.2, 127.9, 127.1, 126.8, 126.3, 124.7, 113.8, 109.8, 74.0, 44.9, 44.3, 20.7, 12.8. HRMS calcd for C₂₁H₂₅NO [M]⁺: 307.1936. Found: 307.1933. The *ee* of **3fh** was determined by HPLC analysis using Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5 mL/min, 254 nm; *t*_{major} = 15.5 min, *t*_{minor} = 14.4 min.

(1R,2R)-6,7-dibromo-2-(4-(diethylamino)-2-methylphenyl)-1,2-dihydronaphthalen-1 -ol (3gh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/20), 78 mg, 84% yield, 83% *ee*. Mp 135 – 138 °C. $[\alpha]_D^{22}$ = -365.9 (c = 1.05, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.39 (s, 1H), 6.93 (d, *J* = 8.6 Hz, 1H), 6.52 - 6.45 (m, 3H), 6.04 (dd, *J* = 9.6, 3.5 Hz, 1H), 4.75 (d, *J* = 8.6 Hz, 1H), 3.94 (d, *J* = 6.1 Hz, 1H), 3.32 (q, *J* = 7.0 Hz, 4H), 2.39 (s, 3H), 2.09 (s, 1H), 1.15 (t, *J* = 7.0 Hz, 6H). ¹³C NMR

(CDCl₃, 100MHz): δ 146.9, 137.9, 136.9, 133.7, 133.7, 131.4, 130.7, 128.6, 125.4, 123.9, 123.2, 113.8, 109.8, 73.4, 44.7, 44.2, 20.6, 12.7. HRMS calcd for C₂₁H₂₃Br₂NO [M]⁺: 463.0146. Found: 463.0154. The *ee* of **3gh** was determined by HPLC analysis using a Daicel Chiralcel AS-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 0.5mL/min, 254 nm; t_{major} = 10.0 min, t_{minor} = 12.1 min.

(1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-6,7-dimethyl-1,2-dihydronaphthalen-1 -ol (3hh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 54 mg, 80% yield, 94% *ee*. Mp 128 – 131 °C. $[\alpha]_D^{22}$ = -395.0 (c = 1.06, CHCl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 1H), 6.97 (s, 1H), 6.90 (d, *J* = 8.6 Hz, 1H), 6.62 (dd, *J* = 9.6, 1.7 Hz, 1H), 6.54 (d, *J* = 2.6 Hz, 1H), 6.42 (dd, *J* = 8.6, 2.7 Hz, 1H), 5.94 (dd, *J* = 9.6, 4.2 Hz, 1H), 4.76 (d, *J* = 6.1 Hz, 1H), 4.00 - 3.97 (m, 1H), 3.32 (q, *J* = 7.1 Hz, 4H), 2.45 (s, 3H), 2.27 (d, *J* = 8.5 Hz, 6H), 1.99 (s, 1H), 1.15 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 146.7, 137.6, 136.3, 136.2, 133.2, 130.5, 130.0, 128.6, 128.6, 127.8, 126.8, 124.8, 113.8, 109.7, 73.8, 45.0, 44.3, 20.7, 19.7, 19.6, 12.8. HRMS calcd for C₂₃H₂₉NO [M]⁺: 335.2249. Found: 335.2244. The *ee* of **3hh** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1mL/min, 254 nm; *t*_{maior} = 6.0 min, *t*_{minor} = 5.3 min.

(5R,6R)-6-(4-(diethylamino)-2-methylphenyl)-5,6-dihydronaphtho[2,3-d][1,3]dioxol-5-ol (3ih):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/15), 55 mg, 78% yield, 93% *ee*. Mp 125 – 128 °C. $[\alpha]_D^{22}$ = -306.8 (c = 1.07, CHCl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.91 - 6.89 (m, 2H), 6.68 (s, 1H), 6.54 - 6.51 (m, 2H), 6.41 (dd, *J* = 8.6, 2.5 Hz, 1H), 5.94 - 5.89 (m, 3H), 4.69 - 4.68 (m, 1H), 3.97 - 3.94 (m, 1H), 3.32 (q, *J* = 7.0 Hz, 4H), 2.43 (s, 3H), 2.07 - 2.06 (m, 1H), 1.14 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 147.2, 146.9, 146.7, 137.6, 129.9, 129.2, 128.5, 127.1, 126.6, 124.4, 113.8, 109.7, 108.3, 107.0, 101.0, 74.0, 44.7, 44.2, 20.6, 12.7. HRMS calcd for C₂₂H₂₅NO₃ [M]⁺: 351.1834. Found: 351.1838. The *ee* of **3ih** was determined by HPLC analysis using a Daicel Chiralcel AD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; *t*_{major} = 8.8min, *t*_{minor} = 9.7min .

(1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-6,7-dimethoxy-1,2-dihydronaphthalen -1-ol (3jh):

Colourless oil, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 53 mg, 72% yield, 97% *ee*. $[\alpha]_D^{22}$ = -372.7 (c = 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 6.94 (s, 1H), 6.89 (d, *J* = 8.6 Hz, 1H), 6.71 (s, 1H), 6.56 (dd, *J* = 9.6, 1.7 Hz, 1H), 6.52 (d, *J* = 2.5 Hz, 1H), 6.40 (dd, *J* = 8.6, 2.7 Hz, 1H), 5.90 (dd, *J* = 9.6, 4.2 Hz, 1H), 4.74 (d, *J* = 6.5 Hz, 1H), 3.98 - 3.95 (m, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 3.31 (q, *J* = 7.1 Hz, 4H), 2.44 (s, 3H), 1.99 (s, 1H), 1.13 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 148.6, 148.4, 146.7, 137.7, 129.2, 128.7, 128.4, 126.5, 125.8, 124.6, 113.8, 110.8, 109.8, 109.7, 74.0, 56.1, 56.0, 45.0, 44.3, 20.7, 12.8. HRMS calcd for C₂₃H₂₉NO₃ [M]⁺:

367.2147. Found: 367.2139. The *ee* of **3jh** was determined by HPLC analysis using a Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1 mL/min, 254 nm; t_{major} = 12.4 min, t_{minor} = 20.2 min.

(1R,2R)-2-(4-(diethylamino)-2-methylphenyl)-5,8-dimethoxy-1,2-dihydronaphthalen -1-ol (3kh):

White solid, purified by silica gel column chromatography (ethyl acetate/hexane, 1/10), 51 mg, 70% yield, 90% *ee*. Mp 126 – 129 °C. $[\alpha]_D^{22}$ = -363.7 (c = 1.01, CHCl₃). ¹H NMR (400 MHz, CDCl₃) & 7.11 (d, *J* = 9.8 Hz, 1H), 6.80 (d, *J* = 9.0 Hz, 1H), 6.71 (d, *J* = 8.9 Hz, 2H), 6.53 (s, 1H), 6.30 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.08 (dd, *J* = 9.8, 5.6 Hz, 1H), 5.11 (s, 1H), 4.05 (d, *J* = 5.3 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 3.28 (q, *J* = 7.0 Hz, 4H), 2.51 (s, 3H), 2.30 (s, 1H), 1.11 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 151.5, 149.5, 146.6, 137.2, 129.2, 128.2, 124.2, 123.5, 122.7, 120.0, 114.0, 111.2, 110.1, 109.4, 66.5, 56.3, 55.8, 44.3, 43.3, 20.5, 12.8. HRMS calcd for C₂₃H₂₉NO₃ [M]⁺: 367.2147. Found: 367.2145. The *ee* of **3kh** was determined by HPLC analysis using a Daicel Chiralcel OD-H column (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 85/15, 1 mL/min, 254 nm; *t*_{major} = 14.1 min, *t*_{minor} = 11.0 min.

References:

(1) Cho, Y.-h.; Zunic, V.; Senboku, H.; Olsen, M.; Lautens, M. J. Am. Chem. Soc. 2006, *128*, 6837-6846.

E: HPLC Spectra of Products

Note: The racemic ring opening products were prepared by using (\pm) -binap (for azabenzonorbornadienes) or (\pm) - difluroPHOS (for oxabenzonorbornadienes) as ligand.

Pea	k RetTime	Type Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
	-				
1	11.403 B	в 0.4682	6448.13867	209.43990	50.4616
2	14.857 B	в 0.8443	6330.16357	115.34850	49.5384

Racemic:

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
-					
1	12.378 BB	0.3117	1.19532e4	589.08289	93.4703
2	14.006 BB	0.4443	835.03137	28.54070	6.5297

 1
 11.358
 BB
 0.3653
 4748.64307
 195.52371
 49.9457

 2
 13.472
 BB
 0.5332
 4758.96191
 134.36363
 50.0543

Pe	ak RetTin	ne Type	Widt	h Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.364	BB (0.3693	8789.68066	356.93051	96.6429
2	13.612	BB (0.5306	305.32745	8.82618	3.3571

#	[min]		[min]	[mAU*s]	[mAU]	8
I						
1	7.671	VB	0.2477	3427.18921	213.00208	49.5714
2	10.222	VBA	0.2924	3486.45166	182.88257	50.4286

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
-		·				
1	24.846	BB	0.6919	4690.51611	101.93227	50.2748
2	27.786	BB	0.9534	4639.23291	73.49626	49.7252

Pea	ak RetTin	ne Type	Widtl	n Area	Height	Area
#	[min]		[min]	[mAU* s]	[mAU]	8
I		-				
1	24.962	вв	0.6995	7218.24170	154.95103	95.6992
2	28.145	вв	0.9052	324.39166	5.35117	4.3008

Pe	ak RetTime	Туре	Width	Area	Height	Area
#	[min]	[mi	[n]	[mAU*s]	[mAU]	8
		·	-			-
1	10.433 VE	8 0.3	043	169.04805	8.5632	6 7.3080
2	11.664 BE	8 0.2	2928 2	2144.13745	112.2808	2 92.6920

Pea	k RetTin	ne Type	Widtł	n Area	Height	Area
#	[min]		[min]	[mAU* s]	[mAU]	8
-		-				I
1	10.993	MM	0.9468	3783.79395	66.61001	49.4539
2	14.877	MM	1.5477	3867.36108	41.64698	50.5461

#	[min]		[min]	[mAU*s]	[mAU]	8
1	17.072	вв	1.6876	3.25991e4	264.91742	50.5313
2	27.939	BB	3.4587	3.19136e4	113.76646	49.4687

49.1831

Racemic:

0.3165 6250.10059 304.48669

Enantioenriched:

2

10.488 BBA

Enantioenriched:

Peak RetTime Type Width Area Height Area

#	[min]		[min]	[mAU*s]	[mAU]	8
I						
1	14.331	BV	0.3266	1068.44165	50.14924	3.7485
2	15.490	VВ	0.3620	2.74344e4	1159.78369	96.2515

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
-	-				
1	10.039 BV	0.4857	1.13993e4	367.68768	91.3039
2	12.080 VV	0.5272	1085.70605	31.72812	8.6961

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU* s]	[mAU]	8
-	-				
1	5.271 VB	0.1536	77.33765	7.67277	3.0291
2	6.045 BV	0.1780	2475.78906	215.61607	96.9709

#	[min]		[min]	[mAU*s]	[mAU]	8
1	8.886	ΒV	0.2367	3186.72119	205.74065	50.5112
2	9.783	VВ	0.2647	3122.21411	179.71478	49.4888

Peak	RetTime 7	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
I	I	I			-	-
1	12.449	BB	0.6704	4212.8330:	1 95.1726	7 50.6680
2	20.177	BB	1.2812	4101.75293	3 53.36023	5 49.3320

CCDC 1571052

Crystal data for cu_qwh418a_0m: C₂₃H₂₈N₂O₂, M = 364.47, a = 9.9707(2) Å, b = 9.7555(2) Å, c = 10.8203(2) Å, $a = 90^{\circ}$, $\beta = 107.7860(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 1002.18(3) Å³, T = 100(2) K, space group P21, Z = 2, μ (CuK α) = 0.607 mm⁻¹, 10190 reflections measured, 3044 independent reflections ($R_{int} = 0.0323$). The final R_I values were 0.0301 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0777 ($I > 2\sigma(I)$). The final R_I values were 0.0302 (all data). The final $wR(F^2)$ values were 0.0778 (all data). The goodness of fit on F^2 was 1.050. Flack parameter = -0.03(7).

View of a molecule of qwh418a with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of qwh418a. Hydrogen-bonds are shown as dashed lines.

Table 1	Crystal data	and structure	refinement for	C11 C	wh418a	0m
rable r.	Crystal uata	and structure	remement for	cu_c	1wn+10a_	un.

Identification code	cu_qwh418a_0m		
Empirical formula	C23 H28 N2 O2		
Formula weight	364.47		
Temperature	100(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P21		
Unit cell dimensions	a = 9.9707(2) Å	$\alpha = 90$ °.	
	b = 9.7555(2) Å	β = 107.7860(10) °.	
	c = 10.8203(2) Å	$\gamma = 90$ °.	
Volume	1002.18(3) Å ³		
Z	2		
Density (calculated)	1.208 Mg/m ³		
Absorption coefficient	0.607 mm ⁻¹		
F(000)	392		
Crystal size	1.000 x 0.520 x 0.130 mm ³		
Theta range for data collection	4.291 to 70.246 °.		
Index ranges	-12<=h<=11, -10<=k<=11, -12<=l<=12		
Reflections collected	10190		
Independent reflections	3044 [R(int) = 0.0323]		
Completeness to theta = 67.679°	98.0 %		
Absorption correction	Semi-empirical from equivalen	ts	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3044 / 1 / 250
Goodness-of-fit on F ²	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0301, $wR2 = 0.0777$
R indices (all data)	R1 = 0.0302, wR2 = 0.0778
Absolute structure parameter	-0.03(7)
Extinction coefficient	0.0242(17)
Largest diff. peak and hole	0.172 and -0.171 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)

for cu_qwh418a_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
O(1)	9510(1)	11121(1)	7569(1)	22(1)
O(2)	8619(1)	9073(2)	7983(1)	27(1)
N(1)	14166(2)	6706(2)	7986(2)	36(1)
N(2)	8322(2)	9820(2)	5927(1)	20(1)
C(1)	14323(2)	5803(4)	9075(2)	54(1)
C(2)	12826(2)	6983(2)	7156(2)	26(1)
C(3)	11625(2)	6343(2)	7312(2)	26(1)
C(4)	10294(2)	6632(2)	6481(2)	24(1)
C(5)	10082(2)	7553(2)	5458(2)	21(1)
C(6)	8625(2)	7889(2)	4562(2)	20(1)
C(7)	7693(2)	8566(2)	5295(2)	20(1)
C(8)	8808(2)	9923(2)	7237(2)	19(1)
C(9)	10316(2)	11388(2)	8939(2)	22(1)
C(10)	9334(2)	11478(2)	9766(2)	28(1)
C(11)	15312(2)	7625(3)	8007(3)	44(1)
C(12)	12621(2)	7890(2)	6110(2)	28(1)
C(13)	11277(2)	8155(2)	5287(2)	24(1)
C(14)	7877(2)	6641(2)	3836(2)	23(1)
C(15)	6481(2)	6579(2)	3371(2)	25(1)
C(16)	5587(2)	7705(2)	3539(2)	23(1)
C(17)	6177(2)	8751(2)	4431(2)	21(1)
C(18)	5350(2)	9840(2)	4573(2)	26(1)
C(19)	3930(2)	9908(3)	3827(2)	30(1)

C(20)	3342(2)	8873(3)	2964(2)	30(1)
C(21)	4162(2)	7777(2)	2819(2)	28(1)
C(22)	10983(2)	12777(2)	8872(2)	26(1)
C(23)	11437(2)	10292(2)	9409(2)	30(1)

Table 3. Bond lengths [Å] and angles [°] for cu_qwh418a_0m.

O(1)-C(8)	1.353(2)
O(1)-C(9)	1.478(2)
O(2)-C(8)	1.211(2)
N(1)-C(2)	1.390(2)
N(1)-C(1)	1.441(3)
N(1)-C(11)	1.447(3)
N(2)-C(8)	1.354(2)
N(2)-C(7)	1.447(3)
N(2)-H(4)	0.8800
C(1)-H(6)	0.9800
C(1)-H(5)	0.9800
C(1)-H(1)	0.9800
C(2)-C(12)	1.401(3)
C(2)-C(3)	1.405(3)
C(3)-C(4)	1.386(3)
C(3)-H(12)	0.9500
C(4)-C(5)	1.391(3)
C(4)-H(13)	0.9500
C(5)-C(13)	1.390(3)
C(5)-C(6)	1.515(2)
C(6)-C(14)	1.516(3)
C(6)-C(7)	1.542(3)
C(6)-H(14)	1.0000
C(7)-C(17)	1.526(2)
C(7)-H(21)	1.0000
C(9)-C(23)	1.518(3)
C(9)-C(10)	1.518(3)
C(9)-C(22)	1.520(3)
C(10)-H(2)	0.9800
C(10)-H(28)	0.9800

C(10)-H(3)	0.9800
C(11)-H(9)	0.9800
C(11)-H(7)	0.9800
C(11)-H(8)	0.9800
C(12)-C(13)	1.388(3)
C(12)-H(11)	0.9500
C(13)-H(10)	0.9500
C(14)-C(15)	1.329(3)
C(14)-H(20)	0.9500
C(15)-C(16)	1.460(3)
C(15)-H(19)	0.9500
C(16)-C(21)	1.399(3)
C(16)-C(17)	1.404(3)
C(17)-C(18)	1.382(3)
C(18)-C(19)	1.401(3)
C(18)-H(15)	0.9500
C(19)-C(20)	1.379(3)
C(19)-H(16)	0.9500
C(20)-C(21)	1.383(3)
C(20)-H(17)	0.9500
C(21)-H(18)	0.9500
C(22)-H(23)	0.9800
C(22)-H(24)	0.9800
C(22)-H(22)	0.9800
C(23)-H(26)	0.9800
C(23)-H(25)	0.9800
C(23)-H(27)	0.9800
C(8)-O(1)-C(9)	119.83(14)
C(2)-N(1)-C(1)	119.35(19)
C(2)-N(1)-C(11)	119.3(2)
C(1)-N(1)-C(11)	118.52(19)
C(8)-N(2)-C(7)	121.49(16)
C(8)-N(2)-H(4)	119.3
C(7)-N(2)-H(4)	119.3
N(1)-C(1)-H(6)	109.5
N(1)-C(1)-H(5)	109.5
H(6)-C(1)-H(5)	109.5

N(1)-C(1)-H(1)	109.5
H(6)-C(1)-H(1)	109.5
H(5)-C(1)-H(1)	109.5
N(1)-C(2)-C(12)	121.24(19)
N(1)-C(2)-C(3)	121.48(19)
C(12)-C(2)-C(3)	117.27(17)
C(4)-C(3)-C(2)	120.93(19)
C(4)-C(3)-H(12)	119.5
C(2)-C(3)-H(12)	119.5
C(3)-C(4)-C(5)	122.03(18)
C(3)-C(4)-H(13)	119.0
C(5)-C(4)-H(13)	119.0
C(13)-C(5)-C(4)	116.76(17)
C(13)-C(5)-C(6)	121.11(17)
C(4)-C(5)-C(6)	122.13(17)
C(5)-C(6)-C(14)	112.40(16)
C(5)-C(6)-C(7)	111.98(14)
C(14)-C(6)-C(7)	109.40(15)
C(5)-C(6)-H(14)	107.6
C(14)-C(6)-H(14)	107.6
C(7)-C(6)-H(14)	107.6
N(2)-C(7)-C(17)	113.25(16)
N(2)-C(7)-C(6)	111.29(14)
C(17)-C(7)-C(6)	112.03(14)
N(2)-C(7)-H(21)	106.6
C(17)-C(7)-H(21)	106.6
C(6)-C(7)-H(21)	106.6
O(2)-C(8)-O(1)	125.98(16)
O(2)-C(8)-N(2)	124.58(18)
O(1)-C(8)-N(2)	109.43(15)
O(1)-C(9)-C(23)	109.33(16)
O(1)-C(9)-C(10)	110.53(15)
C(23)-C(9)-C(10)	112.62(17)
O(1)-C(9)-C(22)	102.79(14)
C(23)-C(9)-C(22)	110.87(16)
C(10)-C(9)-C(22)	110.27(17)
C(9)-C(10)-H(2)	109.5
C(9)-C(10)-H(28)	109.5

H(2)-C(10)-H(28)	109.5
C(9)-C(10)-H(3)	109.5
H(2)-C(10)-H(3)	109.5
H(28)-C(10)-H(3)	109.5
N(1)-C(11)-H(9)	109.5
N(1)-C(11)-H(7)	109.5
H(9)-C(11)-H(7)	109.5
N(1)-C(11)-H(8)	109.5
H(9)-C(11)-H(8)	109.5
H(7)-C(11)-H(8)	109.5
C(13)-C(12)-C(2)	120.62(18)
C(13)-C(12)-H(11)	119.7
C(2)-C(12)-H(11)	119.7
C(12)-C(13)-C(5)	122.35(19)
C(12)-C(13)-H(10)	118.8
C(5)-C(13)-H(10)	118.8
C(15)-C(14)-C(6)	121.66(18)
C(15)-C(14)-H(20)	119.2
C(6)-C(14)-H(20)	119.2
C(14)-C(15)-C(16)	121.83(18)
C(14)-C(15)-H(19)	119.1
C(16)-C(15)-H(19)	119.1
C(21)-C(16)-C(17)	119.14(18)
C(21)-C(16)-C(15)	121.61(18)
C(17)-C(16)-C(15)	119.25(16)
C(18)-C(17)-C(16)	119.75(17)
C(18)-C(17)-C(7)	122.38(17)
C(16)-C(17)-C(7)	117.65(17)
C(17)-C(18)-C(19)	120.31(19)
C(17)-C(18)-H(15)	119.8
C(19)-C(18)-H(15)	119.8
C(20)-C(19)-C(18)	120.1(2)
C(20)-C(19)-H(16)	120.0
C(18)-C(19)-H(16)	120.0
C(19)-C(20)-C(21)	119.94(17)
C(19)-C(20)-H(17)	120.0
C(21)-C(20)-H(17)	120.0
C(20)-C(21)-C(16)	120.75(19)

C(20)-C(21)-H(18)	119.6
C(16)-C(21)-H(18)	119.6
C(9)-C(22)-H(23)	109.5
C(9)-C(22)-H(24)	109.5
H(23)-C(22)-H(24)	109.5
C(9)-C(22)-H(22)	109.5
H(23)-C(22)-H(22)	109.5
H(24)-C(22)-H(22)	109.5
C(9)-C(23)-H(26)	109.5
C(9)-C(23)-H(25)	109.5
H(26)-C(23)-H(25)	109.5
C(9)-C(23)-H(27)	109.5
H(26)-C(23)-H(27)	109.5
H(25)-C(23)-H(27)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cu_qwh418a_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
24(1)	19(1)	19(1)	-2(1)	4(1)	-5(1)
36(1)	24(1)	23(1)	0(1)	10(1)	-9(1)
21(1)	41(1)	42(1)	5(1)	3(1)	2(1)
24(1)	15(1)	21(1)	1(1)	6(1)	-3(1)
28(1)	81(2)	47(1)	21(2)	3(1)	12(1)
23(1)	25(1)	30(1)	-6(1)	7(1)	4(1)
28(1)	25(1)	26(1)	2(1)	10(1)	4(1)
23(1)	25(1)	27(1)	0(1)	12(1)	-1(1)
23(1)	17(1)	23(1)	-4(1)	8(1)	1(1)
21(1)	20(1)	21(1)	0(1)	8(1)	-1(1)
20(1)	17(1)	21(1)	0(1)	6(1)	-2(1)
19(1)	18(1)	21(1)	-2(1)	6(1)	-1(1)
24(1)	21(1)	19(1)	-2(1)	2(1)	-4(1)
34(1)	25(1)	26(1)	-5(1)	10(1)	-6(1)
24(1)	38(2)	60(2)	-1(1)	-2(1)	1(1)
21(1)	27(1)	38(1)	-1(1)	11(1)	-3(1)
	U^{11} 24(1) 36(1) 21(1) 24(1) 28(1) 23(1) 23(1) 23(1) 23(1) 23(1) 23(1) 21(1) 20(1) 19(1) 24(1) 34(1) 24(1) 21(1)	U^{11} U^{22} $24(1)$ $19(1)$ $36(1)$ $24(1)$ $21(1)$ $41(1)$ $21(1)$ $41(1)$ $24(1)$ $15(1)$ $28(1)$ $81(2)$ $23(1)$ $25(1)$ $28(1)$ $25(1)$ $23(1)$ $25(1)$ $23(1)$ $25(1)$ $23(1)$ $17(1)$ $21(1)$ $20(1)$ $20(1)$ $17(1)$ $19(1)$ $18(1)$ $24(1)$ $21(1)$ $34(1)$ $25(1)$ $24(1)$ $38(2)$ $21(1)$ $27(1)$	U^{11} U^{22} U^{33} 24(1)19(1)19(1)36(1)24(1)23(1)21(1)41(1)42(1)24(1)15(1)21(1)24(1)15(1)21(1)24(1)15(1)21(1)28(1)81(2)47(1)23(1)25(1)30(1)28(1)25(1)26(1)23(1)25(1)27(1)23(1)25(1)27(1)23(1)17(1)23(1)21(1)20(1)21(1)20(1)17(1)21(1)19(1)18(1)21(1)24(1)25(1)26(1)24(1)38(2)60(2)21(1)27(1)38(1)	U^{11} U^{22} U^{33} U^{23} 24(1)19(1)19(1)-2(1)36(1)24(1)23(1)0(1)21(1)41(1)42(1)5(1)24(1)15(1)21(1)1(1)28(1)81(2)47(1)21(2)23(1)25(1)30(1)-6(1)28(1)25(1)26(1)2(1)23(1)25(1)27(1)0(1)23(1)25(1)21(1)-4(1)21(1)20(1)21(1)0(1)20(1)17(1)21(1)0(1)19(1)18(1)21(1)-2(1)24(1)25(1)26(1)-5(1)24(1)38(2)60(2)-1(1)21(1)27(1)38(1)-1(1)	U^{11} U^{22} U^{33} U^{23} U^{13} 24(1)19(1)19(1)-2(1)4(1)36(1)24(1)23(1)0(1)10(1)21(1)41(1)42(1)5(1)3(1)24(1)15(1)21(1)1(1)6(1)24(1)15(1)21(1)1(1)6(1)28(1)81(2)47(1)21(2)3(1)23(1)25(1)30(1)-6(1)7(1)28(1)25(1)26(1)2(1)10(1)23(1)25(1)27(1)0(1)12(1)23(1)17(1)23(1)-4(1)8(1)21(1)20(1)21(1)0(1)6(1)19(1)18(1)21(1)-2(1)6(1)24(1)21(1)19(1)-2(1)2(1)34(1)25(1)26(1)-5(1)10(1)24(1)38(2)60(2)-1(1)-2(1)21(1)27(1)38(1)-1(1)11(1)

C(13)	26(1)	20(1)	28(1)	2(1)	10(1)	0(1)
C(14)	26(1)	21(1)	23(1)	-2(1)	10(1)	0(1)
C(15)	27(1)	21(1)	26(1)	-5(1)	8(1)	-5(1)
C(16)	22(1)	24(1)	24(1)	2(1)	8(1)	-3(1)
C(17)	21(1)	21(1)	22(1)	2(1)	8(1)	-2(1)
C(18)	24(1)	26(1)	28(1)	-2(1)	9(1)	0(1)
C(19)	27(1)	31(1)	34(1)	4(1)	12(1)	8(1)
C(20)	19(1)	38(1)	31(1)	2(1)	6(1)	1(1)
C(21)	24(1)	32(1)	27(1)	-2(1)	7(1)	-3(1)
C(22)	27(1)	24(1)	25(1)	-2(1)	6(1)	-6(1)
C(23)	26(1)	29(1)	31(1)	2(1)	2(1)	-1(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for cu_qwh418a_0m.

	Х	у	Z	U(eq)
H(4)	8389	10532	5450	24
H(6)	13868	6212	9672	81
H(5)	15326	5663	9528	81
H(1)	13880	4919	8765	81
H(12)	11728	5703	7996	31
H(13)	9502	6188	6615	29
H(14)	8739	8562	3904	24
H(21)	7661	7916	6000	24
H(2)	8568	12120	9367	42
H(28)	9860	11803	10637	42
H(3)	8940	10570	9830	42
H(9)	15391	7710	7130	66
H(7)	16194	7259	8591	66
H(8)	15127	8529	8316	66
H(11)	13410	8327	5963	34
H(10)	11170	8769	4582	29
H(20)	8420	5883	3710	27
H(19)	6053	5780	2917	30
H(15)	5746	10546	5179	31
H(16)	3371	10667	3917	36

H(17)	2376	8913	2468	36
H(18)	3751	7066	2224	33
H(23)	11642	12697	8365	39
H(24)	11490	13088	9752	39
H(22)	10245	13441	8456	39
H(26)	10984	9400	9410	45
H(25)	12026	10512	10292	45
H(27)	12023	10255	8830	45

Table 6. Torsion angles [^o] for cu_qwh418a_0m.

C(1)-N(1)-C(2)-C(12)	177.9(2)
C(11)-N(1)-C(2)-C(12)	17.3(3)
C(1)-N(1)-C(2)-C(3)	-3.6(3)
C(11)-N(1)-C(2)-C(3)	-164.1(2)
N(1)-C(2)-C(3)-C(4)	179.7(2)
C(12)-C(2)-C(3)-C(4)	-1.7(3)
C(2)-C(3)-C(4)-C(5)	0.4(3)
C(3)-C(4)-C(5)-C(13)	1.3(3)
C(3)-C(4)-C(5)-C(6)	-178.93(18)
C(13)-C(5)-C(6)-C(14)	118.65(19)
C(4)-C(5)-C(6)-C(14)	-61.1(2)
C(13)-C(5)-C(6)-C(7)	-117.7(2)
C(4)-C(5)-C(6)-C(7)	62.5(2)
C(8)-N(2)-C(7)-C(17)	120.48(17)
C(8)-N(2)-C(7)-C(6)	-112.24(17)
C(5)-C(6)-C(7)-N(2)	58.8(2)
C(14)-C(6)-C(7)-N(2)	-175.88(15)
C(5)-C(6)-C(7)-C(17)	-173.23(16)
C(14)-C(6)-C(7)-C(17)	-47.9(2)
C(9)-O(1)-C(8)-O(2)	9.6(3)
C(9)-O(1)-C(8)-N(2)	-171.28(14)
C(7)-N(2)-C(8)-O(2)	-9.2(3)
C(7)-N(2)-C(8)-O(1)	171.65(15)
C(8)-O(1)-C(9)-C(23)	59.5(2)
C(8)-O(1)-C(9)-C(10)	-65.1(2)
C(8)-O(1)-C(9)-C(22)	177.28(15)

N(1)-C(2)-C(12)-C(13)	179.89(19)
C(3)-C(2)-C(12)-C(13)	1.3(3)
C(2)-C(12)-C(13)-C(5)	0.4(3)
C(4)-C(5)-C(13)-C(12)	-1.7(3)
C(6)-C(5)-C(13)-C(12)	178.51(18)
C(5)-C(6)-C(14)-C(15)	156.31(17)
C(7)-C(6)-C(14)-C(15)	31.3(2)
C(6)-C(14)-C(15)-C(16)	-0.4(3)
C(14)-C(15)-C(16)-C(21)	165.63(19)
C(14)-C(15)-C(16)-C(17)	-13.5(3)
C(21)-C(16)-C(17)-C(18)	-0.8(3)
C(15)-C(16)-C(17)-C(18)	178.31(17)
C(21)-C(16)-C(17)-C(7)	173.99(16)
C(15)-C(16)-C(17)-C(7)	-6.9(3)
N(2)-C(7)-C(17)-C(18)	-20.5(2)
C(6)-C(7)-C(17)-C(18)	-147.35(19)
N(2)-C(7)-C(17)-C(16)	164.88(16)
C(6)-C(7)-C(17)-C(16)	38.0(2)
C(16)-C(17)-C(18)-C(19)	-0.3(3)
C(7)-C(17)-C(18)-C(19)	-174.84(18)
C(17)-C(18)-C(19)-C(20)	1.2(3)
C(18)-C(19)-C(20)-C(21)	-1.0(3)
C(19)-C(20)-C(21)-C(16)	-0.2(3)
C(17)-C(16)-C(21)-C(20)	1.1(3)
C(15)-C(16)-C(21)-C(20)	-178.06(19)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3

Table 7. Hydrogen bonds for cu_qwh418a_0m [Å and].

C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5
C(10)-H(3)O(2)	0.98	2.42	2.983(3)	116.3
C(23)-H(26)O(2)	0.98	2.41	3.007(2)	118.5