Enantioselective Copper-Catalyzed Methylboration of Alkenes

Bin Chen^{†, ‡, §}, Peng Cao[§], Yang Liao[†], Min Wang[†] and Jian Liao^{†,‡,*}

[†]Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China and University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China [‡]College of Chemical Engineering, Sichuan University,Chengdu 610065, People's Republic of China [§]College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068,People's Republic of China

*E-mail: jliao@cib.ac.cn

Supporting Information

Table of Contents

1.General	S2
2. Preparation of Substrates	S2
3. Optimization of Enantioselective Methylboration of Alkenes	S2
4. Copper-Catalyzed Enantioselective Methylboration of Alkenes	S2
4.1 Procedure A for the transformation of vinylarenes	S5
4.2 Procedure B for the transformation of β -substituted styrenesoraliphatic olefins	S5
4.3 The procedure for Scaled-up Reaction	S6
5. The Characterization Data for products	S7
6. Synthesis of (S)-Naproxen	S21
7. Formal Synthsis of (<i>R</i>)- <i>ar</i> -Turmerone and 8-Deoxyanisatin	S23
8. References	S25
9. ¹ H, ¹³ C, ¹¹ B, ¹⁹ F NMR and HPLC Spectra	S26

1. General

All commercial available reagents were used directly without further purification. Solvents used in catalytic reactions were dried and distilled in appropriate method. Solvent employed for column chromatography were purchased in technical grade quality without distillation before use. All catalytic reactions were operated in glovebox. NMR spectra were obtained on a Bruker 400 spectrometer in CDCl₃, operating at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR, 376 MHz for ¹⁹F NMR and 128 MHz for ¹¹B NMR. The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of doublet, t = triplet and m = multiplet. Optical rotation was recorded on PE polarmeter 341. Enantiomerical excess were measured by chiral HPLC analysis on Chiralcel OD-H, AD-H, OJ-H, AS-H chiral column (Daicel Chemical Industries, LTD). Electrospray ionization high-resolution mass spectra (ESI-HRMS) were recorded on a Bruke P-SIMS-Gly FT-ICR mass spectrometer.

2. Preparation of Substrates

All commercially available reagents were used as received without further purification. $1w^1$, $3g^2$, $3h^2$, was synthesized according to literature.

3. Optimization of Enantioselective Methylboration of Alkenes

la fa	CH ₃ I + B ₂ (pin) ₂ CuCl (10 mol %) L1 (12 mol %) Base (1.5 equiv) THF, 25 °C, 12 h	2a 2a'	$MeO \xrightarrow{V}_{D} P(iPr)_2$
entry	base	yield(%) ^b (2a/2a')	er ^c
1	КОН	90:10	94:6
2	KO ^t Bu	88:12	93.5:6.5
3	NaO ^t Bu	92:8	92:8

Table S1.Screening of Base^a

4	LiO ^t Bu	98:trace	92.5:7.5
5	KOMe	96:trace	94.5:5.5
6	NaOMe	65:3	83:17

^aConditions: **1a** (0.2 mmol), CH₃I (0.3 mmol), B₂(pin)₂ (0.3 mmol), CuCl (10 mol %), **L1** (12 mol %), **Base** (0.3 mmol), THF (1.5 mL) at 25 °C for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

Table S2.Screening of Solvent^a

	CH ₃ I CuCl (10 mol %) + B ₂ (pin) ₂ L1 (12 mol %) KOMe (1.5 equiv) solvent, 25 °C, 12	2h 2a 2a'	Meo So OMe P(iPr) ₂
entry	solvent	yield(%) ^b (2a/2a')	er ^c
1	THF	96:trace	94.5:5.5
2	2-MeTHF	83:15	85:15
3	Dioxane	88:10	87:13
4	MTBE	50:50	83:17
5	Toluene	60:40	75:25
6	DMF	Trace:15	n.d.

^aConditions:**1a** (0.2 mmol), CH₃I (0.3 mmol), B₂(pin)₂ (0.3 mmol), CuCl (10 mol %), L**1**(12 mol %), KOMe (0.3mmol), Solvent (1.5 mL) at 25 °C for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

Table S3.Screening of Copper Salts^a

	CH ₃ I Cu salt (10 mol %) + B ₂ (pin) ₂ L1 (12 mol %) 1a THF, 25 °C, 12 h	2a 2a'	MeO SO OMe L1
entry	copper salt	yield(%) ^b (2a/2a')	er ^c
1	CuCl	97:trace	94.5:5.5
2	CuBr	96:trace	94:6
3	CuI	97:trace	92.5:7.5
4	CuOAc	68:30	93.5:6.5
5	$Cu(OAc)_2$	86:8	93:7

^aConditions:**1a** (0.2 mmol), CH₃I (0.3 mmol), B₂(pin)₂ (0.3 mmol), **Copper Salt** (10 mol %), **L1**(12 mol %), KOMe (0.3 mmol), THF (1.5 mL) at 25 °C for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

Table S4. Screening of the Temperature^a

	1a CH ₃ I CuCl (10 mol %) L4 (12 mol %) L4 (12 mol %) KOMe (1.5 equiv) THF, T, 12 h	2a 2a'	MeO ^S O DMe L4
entry	temp	yield(%) ^b (2a/2a')	er ^c
1	45 °C	96:trace	94.5:5.5
2	25 °C	97:trace	97:3
3	10 °C	96:trace	95:5

4	0 °C	80:2	95:5
5	-10 °C	64:3	95.5:4.5

^aConditions:**1a** (0.2 mmol), CH₃I (0.3 mmol), $B_2(pin)_2$ (0.3 mmol), CuCl (10 mol %), **L4** (12 mol %), KOMe (0.3 mmol), THF (1.5 mL) at the appropriate temperature for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

СН₀І CuCI (10 mol % NaBO₃.4H₂O Ligand (12 mol %) THF:H₂O = 1:1 KOMe (1.5 equiv) THF, 25 °C, 12 h Ēpin ŌН ŌΗ **B**pin 0 °C-25 °C 3 6 h 4a' er^c $vield(\%)^{b}(4/4a')$ entry ligand 1 L4 n.d. n.r. 2 (S,S)-Me-DUPHOS 85:15 86:14 3 (S,S)-*i*Pr-DUPHOS 30:40 70:30 4 82:18 95:5 (R,R)-quinoxP*

Table S5.Screening of ligands in the internal olefinsystem^a

^aConditions: **3** (0.2 mmol), CH₃I (0.3 mmol), B₂(pin)₂ (0.3 mmol), CuCl (10 mol %), **Ligand** (12 mol %), KOMe (0.3 mmol), THF (1.5 mL) at 25 °C for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

CH₂I B₂(pin)₂ CuCl (10 mol %) (R<u>,R)-quinoxP* (12 mol %</u>) NaBO₂.4H₂O THF:H₂O = 1:1 base (1.5 equiv) THF, 25 °C, 12 h ŌН **B**pin ŌΗ **B**pin 0 °C-25 °C 4a' yield(%)^b(4/4a') er^c base entry 1 LiOMe 30:20 91:9 2 NaOMe 57:19 92:8 3 **KOMe** 83:17 95:5 4 KO^tBu 80:19 89:11

Table S6.Screening of Bases in the internal olefinsystem^a

^aConditions: **3** (0.2 mmol), CH₃I (0.3 mmol), B₂(pin)₂ (0.3 mmol), CuCl (10 mol %), (R,R)-quinoxP* (12 mol %), **Base** (0.3 mmol), THF (1.5 mL) at 25 °C for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

Table S7.Screening of Solvent in the internal olefinsystem^a

	CH ₃ I B ₂ (pin) ₂ CuCl (10 mo 1%) (<i>R</i> , <i>R</i>)-quinoxP* (12 mol %) KOMe (1.5 equiv) 3 solvent, 25 °C, 12 h	$\begin{bmatrix} \mathbf{CH}_{3} \\ \mathbf{Ph} & + \mathbf{Ph} \\ \mathbf{Bpin} & \mathbf{Bpin} \end{bmatrix} \xrightarrow{\mathbf{NaBO}_{3}\cdot\mathbf{4H}_{2}\mathbf{O}} \\ \mathbf{THF:H}_{2}\mathbf{O} = 1:1 \\ 0 \circ \mathbf{C} \cdot 25 \circ \mathbf{C} \\ 6 \mathbf{h} \end{bmatrix}$	Ph + Ph OH OH 4 4a'
entry	solvent	yield(%) ^b (4/4a')	er ^c
1	THF	82:18	95:5
2	2-MeTHF	74:23	92.5:7.5
3	Toluene	76:24	92.5:7.5
4	Dioxane	81:18	93.5:6.5

^aConditions: **3** (0.2 mmol), CH₃I (0.3 mmol), B₂(pin)₂ (0.3 mmol), CuCl (10 mol %), (R,R)-quinoxP* (12 mol %), MeOK (0.3 mmol), solvent (1.5 mL) at 25 °C for 12 h. ^bDetermined by ¹H NMR spectroscopy. ^cDetermined by chiral HPLC analysis.

4. Copper-Catalyzed Enantioselective Methylboration of Alkenes

4.1 Procedure A for the transformation of vinylarenes:

In the glovebox, to a dry vial with a magnetic stir bar was added CuCl (10 mol %, 0.02 mmol, 1.9 mg), L4(12 mol %, 0.024 mmol, 10.2 mg) and 1mL THF, then the mixture was stirred 30 minutes at room temperature. To the mixture was added $B_2(pin)_2$ (76.3 mg, 0.3 mmol), styrene (0.2 mmol), CH₃I or CD₃I (0.3 mmol) and MeOK (0.3 mmol, 21 mg) successively (Note: MeOK must be added at last).After that, 0.5 mL of THF was addedalong the vial's wall to keep all reacts into the reaction solution. The vial was sealed was a rubber stopper, removed from the glovebox and stirredat room temperature for 12 hours. The reaction mixture was filtrated a celite pad, the solvent was removed under vacuo, and the residue was purified by column chromatography on silica gel to give the product **3**, the er was determined by chiral HPLC.

4.2 Procedure B for the transformation of β -substituted styrenesoraliphatic olefins:

In the glovebox, to a dry vial with magnetic stir bar was added CuCl (10 mol %, 0.02 mmol, 1.9 mg), (R,R)-quinoxP* (12 mol %, 0.024 mmol, 8.1 mg) and 1 mL THF,

then the mixture was stirred 30 minutes at room temperature. To the mixture was added $B_2(pin)_2$ (76.3 mg, 0.3 mmol), alkenes **3** (0.2mmol), CH₃I or CD₃I(0.3 mmol) and MeOK (0.3 mmol, 21 mg) successively (Note: MeOK must be added at last). After that, 0.5 mL THF was added along the vial's wall to keep all reacts into the reaction solution. The vial was sealed with a rubber stopper, removed from the glovebox and stirredat room temperature for 12 hours. The reaction mixture was filtrated a celite pad, the solvent was removed under vacuo, and the residue wasroughly purified by a flash column chromatography on silica gel to give methylboration product mixed withsidehydroboration adduct.Considering that the corresponding alcohol derivatives can be separated, themethylboration product was characterized after oxidized to the alcohol. The mixture was dissolved in THF (2.0 mL) at 0 °C, then the aqueous solution of NaBO₃·4H₂O (123.2 mg, 0.8 mmol) in 2 mL water was added dropwise. After addition, the reaction mixture was stirred for 6 hours at room temperature. After both methyl- and hydroboration adducts were consumed, sat. Na₂S₂O₃ solution was added to quench the reaction. The mixture was extracted with EtOAc (3×10 mL) and the combined organic phase was dried over Na₂SO₄. After evaporating the solvent under vacuo, the residue was purified by flash column chromatography on silica gel with EtOAc: Petroleum ether (1:3) to give the pruduct4.

4.3 The procedure for Scaled-up Reaction

In the glovebox, to a 100 mLSchlenkflask with magnetic stir bar was added CuCl (10 mol %, 1 mmol, 95 mg), L4(12 mol %, 2.4 mmol, 510 mg) and 30 mL THF, then the mixture was stirred 60 minutes at room temperature. To the mixture was added $B_2(pin)_2$ (3.82 g, 15 mmol), 1a (10 mmol), CH₃I (15 mmol, 2.13 g) and MeOK (15

mmol, 1.05 g) successively (Note: MeOKwas added slowly to prevent the vigorously exothermic reaction).25 mL THF was then added. The flask was sealed with rubber stopper, removed from the glovebox and stirredat room temperature for 24 hours. The reaction mixture was filtrated through a celite pad, the solvent was removed under vacuo, and the residue was purified by column chromatography on silica gel with EtOAc: Petroleum ether (40: 1)to give the product **2a** (2.38 g, 97% yield, er = 95.5:4.5) as a colorless oil.

5. The Characterization Data for products

(R)-4,4,5,5-tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborolane (2a)

colorless oil (46.2 mg, 94% yield). er = 97:3, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 14.74 min (major) and 18.00 min (minor)]; ¹H

NMR (400 MHz, CDCl₃) δ 7.32–7.21 (m, 4H), 7.21–7.16 (m, 1H), 3.12-3,02 (m, 1H), 1.31 (d, *J* = 3.5 Hz, 3H), 1.21-1.18 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 149.23, 128.19, 126.64, 125.69, 82.99, 35.83, 24.94, 24.79, 24.71. ¹¹B NMR (128 MHz, CDCl₃) δ 33.54. Optical Rotation: [α]_D²²-19.2 (c = 0.255, CH₂Cl₂).[Lit., +19.7945 (c 0.56 in CH₂Cl₂), (*S*)-isomer]³, confirmed as a (*R*)-isomer.HRMS-ESI (*m*/*z*): Calcd for C₁₅H₂₃BO₂, [M+H]: 247.1863; found: 247.1844.

(*R*)-4,4,6,6-tetramethyl-2-(2-phenylpropyl)-1,3,2-dioxaborinane (2A)

Colorless oil (46.8 mg, 90% yield). er = 95:5 [Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 98:2, 0.5 mL/min, λ = 220 nm, retention time: 7.79 min (major) and 8.22 min (minor)]; ¹H NMR

(400 MHz, CDCl₃) δ 7.31–7.28 (m, 4H), 7.19–7.14 (m, 1H), 3.08–2.99 (m, 1H), 1.73 (s, 2H), 1.29–1.26 (m, 15H), 1.08 (d, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.90, 128.01, 126.87, 125.38, 70.23, 48.73, 36.09, 31.71, 31.69, 25.03. ¹¹B NMR (128 MHz, CDCl₃) δ 29.44. Optical Rotation: [α]_D²⁵ -5.56 (c = 0.4, CHCl₃).

HRMS-ESI (*m*/*z*): Calcd for C₁₆H₂₅BO₂, [M+Na]: 283.1845; found: 283.1836.

(*R*)-2-(2-(2-methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b)

colorless oil (49.6 mg, 90% yield). er = 93.5:6.5, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 1.0 mL/min, λ = 220 nm, retention time: 4.51 min (major) and 5.14 min (minor)]; ¹H NMR

(400 MHz, CDCl₃) δ 7.25–7.13 (m, 2H), 6.94–6.83 (m, 2H), 3.84 (s, 3H), 3.53-3.44(m, 1H), 1.27 (d, *J* = 3.4 Hz, 3H), 1.21-1.15 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 156.76, 137.45, 126.58, 126.43, 120.46, 110.37, 82.85, 55.33, 28.49, 24.79, 24.67, 23.42.Optical Rotation: [α]_D²²-5.33 (c = 0.60, CHCl₃).HRMS-ESI (*m*/*z*): Calcd for C₁₆H₂₅BO₃, [M+Na]: 299.1789; found: 299.1787.

(*R*)-4,4,5,5-tetramethyl-2-(2-o-tolylpropyl)-1,3,2-dioxaborolane (2c)

colorless oil (49.4 mg, 95% yield). er = 97:3, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 17.63 min (major) and 26.97 min (minor)]; ¹H NMR

(400 MHz, CDCl₃) δ 7.25–7.15 (m, 1H), 7.10 (t, J = 8.1 Hz, 1H), 7.06–7.04 (m, 2H), 3.33-3.27(m, 1H), 2.39 (s, 3H), 1.27 (d, J = 6.8 Hz, 3H), 1.17-1.15 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 147.20, 134.96, 129.97, 126.09, 125.35, 82.91, 30.68, 24.70, 24.61, 19.52.Optical Rotation: [α]_D²²-4.00 (c = 0.45, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₆H₂₅BO₂, [M+Na]: 283.1840; found: 283.1850.

(*R*)-2-(2-(2-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)

colorless oil (49.3 mg, 88% yield). er = 95:5, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 98:2, 0.7 mL/min, λ = 220 nm, retention time: 5.33 min (major) and 5.74 min (minor)]; ¹H NMR

(400 MHz, CDCl₃) δ 7.33–7.31 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 3.62-3.53(m, 1H), 1.28 (d, *J* = 6.8 Hz, 3H), 1.22-1.12 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 146.14, 133.33, 129.31, 127.07, 126.83, 126.73, 82.03, 31.63, 24.71, 24.65, 23.45.Optical Rotation: [α]_D²²-4.00 (c = 0.50, CHCl₃).HRMS-ESI (*m/z*): Calcd

for C₁₅H₂₂BClO₂, [M+Na]: 303.1294; found: 303.1303.

(*R*)-2-(2-(2-bromophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e)

colorless oil (55.9 mg, 86% yield). er = 92.5:7.5, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.7 mL/min, λ = 220 nm, retention time: 5.52 min (major) and 6.16 min (minor)]; ¹H NMR

(400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.9 Hz, 1H), 7.32–7.25 (m, 2H), 7.04–7.00 (m, 1H), 3.58-3.49(m, 1H), 1.27 (d, *J* = 6.8 Hz, 3H), 1.23-1.11 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 147.76, 132.65, 127.51, 127.16, 127.11, 124.23, 82.04, 34.39, 24.70, 24.66, 23.62. Optical Rotation: [α]_D²²+1.39 (c = 0.645, CHCl₃).HRMS-ESI (*m/z*): Calcd for C₁₅H₂₂BBrO₂, [M+Na]: 347.0788; found: 347.0789.

(R)-2-(2-(3-methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2f)

colorless oil (49.6 mg, 90% yield). er = 97:3, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 20.13 min (major) and 22.64 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.20 (t, *J* = 7.8 Hz, 1H), 6.87–6.82 (m, 2H), 6.73–6.71 (m, 1H), 3.81 (s, 3H), 3.07-2.98 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 3H), 1.20 (s, 12H), 1.18-1.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.52, 151.04, 129.12, 112.44, 110.98, 83.00, 55.09, 35.86, 24.79, 24.73, 24.70.Optical Rotation: [α]_D²²-15.00 (c = 0.32, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₆H₂₅BO₃,[M+Na]: 299.1789; found: 299.1796.

(R)-4,4,5,5-tetramethyl-2-(2-m-tolylpropyl)-1,3,2-dioxaborolane (2g)

colorless oil (47.8 mg, 92% yield). er = 97.5:2.5, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 13.29 min (major) and 15.44 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 7.4 Hz, 1H), 7.07–6.97 (m, 3H), 3.06-2.97(m, 1H), 2.34 (s, 3H), 1.29 (d, *J* = 6.8 Hz, 3H), 1.19-1.15 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 149.20, 137.54, 128.08, 127.48, 126.38, 123.59, 82.96, 35.69, 24.77, 24.69, 21.47.Optical Rotation: [α]_D²²-4.22 (c = 0.45, CHCl₃). HRMS-ESI (*m/z*): Calcd for

(*R*)-2-(2-(3-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2h)

colorless oil (48.7 mg, 87% yield). er = 82:18, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 95:5, 0.5 mL/min, λ = 220 nm, retention time: 18.60 min (major) and 19.55 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.24–7.12 (m, 4H), 3.07-2.98(m, 1H), 1.28 (d, *J* = 7.2 Hz, 3H), 1.17 (s, 12H), 1.14 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 151.25, 133.85, 129.47, 127.02, 125.81, 124.84, 83.07, 35.63, 24.75, 24.71, 21.60.Optical Rotation: [α]_D²²-14.91 (c = 0.61, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₂₂BClO₂, [M+Na]: 303.1294; found: 303.1297.

(R)-2-(2-(3-bromophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i)

colorless oil (55.2 mg, 85% yield). er = 77:23, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 95:5, 0.5 mL/min, λ = 220 nm, retention time: 20.12 min (major) and 21.08 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, *J* = 2.0 Hz, 1H), 7.29–7.27 (m, 1H), 7.19–7.11 (m, 2H), 3.06-2.97(m, 1H), 1.28 (d, *J* = 6.8 Hz, 3H), 1.17 (s, 12H), 1.14 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 151.55, 129.98, 129.82, 128.76, 125.29, 122.23, 83.07, 35.63, 24.78, 24.73, 21.61.Optical Rotation: [α]_D²²-12.02 (c = 0.715, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₂₂BBrO₂, [M+Na]: 347.0788;found: 347.0790.

(R)-2-(2-(4-methoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2j)

colorless oil (49.1 mg, 89% yield). er = 94:6, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 36.67 min (major) and 39.54 min (minor)]; ¹H

NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 3.79 (s, 3H), 3.06-2.97(m, 1H), 1.27 (d, *J* = 6.8 Hz, 3H), 1.18 (s, 12H), 1.16-1.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.60, 141.48, 127.47, 113.55, 82.96, 55.25, 34.98,

25.13, 24.77, 21.71.Optical Rotation: $[\alpha]_D^{22}$ -14.50 (c = 0.60, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₆H₂₅BO₃, [M+Na]: 299.1789;found: 299.1785.

(*R*)-4,4,5,5-tetramethyl-2-(2-p-tolylpropyl)-1,3,2-dioxaborolane (2k)

colorless oil (46.8 mg, 90% yield). er = 95:5, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak AS-H, *n*-hexane/*i*-propanol = 98:2, 0.5 mL/min, λ = 220 nm, retention time: 22.27 min (major) and 23.20 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.09(m, 4H), 3.07-2.98(m, 1H), 2.32 (s, 3H), 1.28 (d, *J* = 6.8 Hz, 3H), 1.20 (s, 12H), 1.17-1.14 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.31, 135.01, 128.84, 126.45, 82.98, 35.33, 24.88, 24.79, 24.70, 20.96.Optical Rotation: [α]_D²²-17.93 (c = 0.485, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for

C₁₆H₂₅BO₂, [M+Na]: 283.1840; found: 283.1845.

(R)-2-(2-(biphenyl-4-yl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2l)

white solid (56.1 mg, 87% yield), m.p.=70°C.er = 96:4, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ =

220 nm, retention time: 22.00 min (major) and 24.30 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.63-7.54(m, 4H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.37-7.33(m, 3H), 3.18-3.09(m, 1H), 1.36 (d, *J* = 6.8 Hz, 3H), 1.25-1.23 (m, 2H), 1.21 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 148.42, 141.30, 138.64, 128.69, 127.08, 127.01, 126.95, 126.91, 83.05, 35.50, 24.87, 24.81, 24.73.Optical Rotation: [α]_D²²-37.20 (c = 0.25, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₂₁H₂₇BO₂, [M+Na]: 345.1996;found: 345.2001.

(R)-2-(2-(4-fluorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2m)

colorless oil (48.1 mg, 91% yield). er = 97:3, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 23.03 min (major) and 24.14 min (minor)]; ¹H

NMR (400 MHz, CDCl₃) δ 7.22-7.19(m, 2H), 6.98-6.94(m, 2H), 3.09-3.01(m, 1H),

1.27 (d, J = 6.8 Hz, 3H), 1.17 (s, 12H), 1.15 (d, J = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.09 (d, J = 241.3 Hz), 144.80 (d, J = 3.0 Hz), 127.95 (d, J = 7.6 Hz), 114.76 (d, J = 20.8 Hz), 83.02, 35.15, 25.12, 24.73, 24.69. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.20.Optical Rotation: $[\alpha]_D^{22}$ -12.08 (c = 0.695, CHCl₃). HRMS-ESI (m/z): Calcd for C₁₅H₂₂BFO₂, [M+Na]: 287.1589;found: 287.1588.

(*R*)-2-(2-(4-chlorophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2n)

white solid (48.2 mg, 86% yield), m.p. = 32 °C. er = 96:4, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak AD-H,

n-hexane/*i*-propanol = 98:2, 1.0 mL/min, λ = 220 nm, retention time: 18.29 min (minor) and 20.01 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.17(m, 4H), 3.07-2.98(m, 1H), 1.27 (d, *J* = 6.8 Hz, 3H), 1.18 (s, 12H), 1.14 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.67, 131.19, 128.22, 128.03, 83.08, 35.26, 24.85, 24.75, 24.70.Optical Rotation: [α]_D²²-26.41 (c = 0.265, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₂₂BClO₂,[M+Na]: 303.1294; found: 303.1298.

(R)-2-(2-(4-bromophenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (20)

white solid (55.2 mg, 85% yield), m.p.= 52 °C. er = 96:4, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak AD-H,

n-hexane/*i*-propanol = 98: 2, 1.0 mL/min, λ = 220 nm, retention time: 19.95 min (minor) and 21.86 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 2H), 3.06-2.97(m, 1H), 1.26 (d, *J* = 6.8 Hz, 3H), 1.18 (s, 12H), 1.14 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.21, 131.18, 128.47, 119.22, 83.08, 35.32, 24.76, 24.71.Optical Rotation: [α]_D²²-29.45 (c = 0.55, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₂₂BBrO₂,[M+Na]: 347.0788;found: 347.0789.

(*R*)-4,4,5,5-tetramethyl-2-(2-(4-(trifluoromethyl)phenyl)propyl)-1,3,2-dioxaborol ane (2p)

colorless oil (54.6 mg, 87% yield). er = 63:37, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol =

95: 5, 0.5 mL/min, $\lambda = 220$ nm, retention time: 16.70 min (minor) and 18.51 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 3.16-3.07(m, 1H), 1.30 (d, J = 7.2 Hz, 3H), 1.19-1.18 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 153.28, 128.01 (q, J = 31.3 Hz), 126.99, 125.13 (q, J = 3.7 Hz), 83.15, 35.74, 24.73, 24.66, 24.62. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.24.Optical Rotation: $[\alpha]_{D}^{22}$ -4.00 (c = 0.50, CHCl₃). HRMS-ESI (*m/z*): Calcd for C₁₆H₂₂BF₃O₂, [M+Na]: 337.1563; found: 337.1562.

4-(1-hydroxypropan-2-yl)benzonitrile (2q)

colorless oil (17.9 mg, 56% yield).(The products were characterized ,OH by an oxidation procedure to convert Bpin to hydroxyl group, because the targeted methylboration product and the hydroboration by-product can not be separated by chromatography). er = 50:50, [Daicel ChiralpakAS-H, *n*-hexane/*i*-propanol = 95:5, 1.0 mL/min, λ = 220 nm, retention time: 32.08 min and 33.95 min]; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d,J = 8.2 Hz,2H), 7.38 (d,J = 8.2 Hz,2H), 3.79-3.73 (m, 2H), 3.09-3.00 (m, 1H), 1.49-1.46 (m, 1H), 1.31(d,J = 7.0)Hz,3H). ¹³C NMR (100 MHz, CDCl3) δ 149.68, 132.38, 128.37, 118.96, 110.44, 68.05, 42.56, 17.31.

(R)-methyl-4-(1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-2-yl)benzoa te (2r)

(minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d,J = 8.2 Hz,2H), 7.31 (d,J = 8.2 Hz,2H),3.90 (s, 3H), 3.15–3.05 (m, 1H), 1.29 (d,*J* = 6.8 Hz, 3H), 1.18–1.16 (m, 14H). ¹³C NMR (100 MHz, CDCl3) δ167.25, 154.73, 129.63, 127.64, 126.71, 83.10, 51.93, 35.90, 24.74, 24.70, 24.64. Optical Rotation: [a]_D²⁵-1.00 (c = 1.4, CHCl₃).HRMS-ESI (m/z): Calcd for C₁₇H₂₅BO₄, [M+Na]:327.1744; found: 327.1745.

(R)-2-(2-(4-tert-butylphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2s)

(Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation)[Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 98:2, 0.7 mL/min, λ = 220 nm, retention time: 16.59 min (minor) and 17.70 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 3.09-3.01(m, 1H), 1.33 (s, 9H), 1.31 (d, J = 6.8 Hz, 3H), 1.19-1.15 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 148.36, 146.13, 126.25, 125.00, 82.94, 35.26, 34.30, 31.44, 24.81, 24.78, 24.65.Optical Rotation: $[\alpha]_D^{22}$ -23.68 (c = 0.38, CHCl₃). HRMS-ESI (*m/z*): Calcd for C₁₉H₃₁BO₂, [M+Na]: 325.2309;found: 325.2318.

(*R*)-2-(2-(4-isobutylphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2t)

colorless oil (54.4 mg, 90% yield). er = 96:4, [Daicel Chiralpak OZ-H, *n*-hexane/*i*-propanol = 90:10, 1.0 mL/min, λ = 220 nm, retention time: 4.20 min (minor) and 5.86 min

white solid (56.1 mg, 93% yield), m.p. = 36 °C. er = 98:2,

(major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.16(d, J = 8.1 Hz, 2H), 7.06(d, J = 8.1 Hz, 2H), 3.03 (sext, J = 7.2 Hz, 1H), 2.45 (d, J = 7.4 Hz, 2H), 1.90-1.79 (m, 1H), 1.29 (d, J = 6.8 Hz, 3H), 1.18-1.15 (m, 14H), 0.91 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) § 146.38, 138.88, 128.88, 126.32, 82.93, 45.05, 35.44, 30.25, 25.05, 24.75, 24.68, 22.37, 22.34.Optical Rotation: $[\alpha]_D^{22}$ -23.03 (c = 0.165, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₉H₃₁BO₂, [M+H]: 303.2489;found: 303.2496.

(*R*)-4,4,5,5-tetramethyl-2-(2-(naphthalen-2-yl)propyl)-1,3,2-dioxaborolane (2u)

white solid (53.8 mg, 91% yield), m.p. = 56 °C. er = 97.5:2.5, [Daicel Chiralpak AD-H, n-hexane/i-propanol = 500:1, 0.4 mL/min, $\lambda = 220$ nm, retention time: 18.71 min (major) and 20.68 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.79(m, 3H), 7.71(s, 1H), 7.49-7.41(m, 3H), 3.27(sext, *J* = 7.2 Hz, 1H), 1.42 (d, *J* = 7.2 Hz, 3H), 1.32-1.28 (m, 2H), 1.19(s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 146.74, 133.64, 132.13, 127.77, 127.61, 127.55, 125.88, 125.70, 124.95, 124.43, 83.04, 35.91, 24.79, 24.74.Optical Rotation: [α]_D²²-30.53 (c = 0.465, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₉H₂₅BO₂, [M+Na]: 319.1840; found: 319.1833.

(*R*)-2-(2-(3,4-dimethoxyphenyl)propyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2v)

colorless oil (53.8 mg, 88% yield). er = 94:6, [Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol = 98:2, 1.0 mL/min, λ = 220 nm, retention time: 6.21 min (major) and 7.38 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 6.79(s, 3H), 3.88(s, 3H), 3.85(s, 3H), 3.00 (sext, *J* = 7.2 Hz, 1H), 1.27 (d, *J* = 6.8 Hz, 3H), 1.17 (s, 12H), 1.45 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 148.60, 146.96, 142.11, 118.21, 111.13, 110.21, 82.98, 55.92, 55.75, 45.05, 35.44, 25.12, 25.02, 24.79, 24.72.Optical Rotation: [α]_D²²-25.78 (c = 0.19, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₇H₂₇BO₄, [M+Na]: 329.1895;found: 329.1894.

(*R*)-4,4,5,5-tetramethyl-2-(2-(4'-(trifluoromethoxy)biphenyl-3-yl)propyl)-1,3,2-di oxaborolane (2w)

F₃CO

colorless oil (73.1 mg, 90% yield). er = 92:8, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation) [Daicel Chiralpak OJ-H,

n-hexane/*i*-propanol = 95:5, 0.5 mL/min, λ = 220 nm, retention time: 8.79 min (minor) and 9.20 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.61(m, 2H), 7.47(s, 1H), 7.38-7.37(m, 2H), 7.31-7.27(m, 2H), 3.15 (sext, *J* = 7.2 Hz, 1H), 1.36 (d, *J* = 7.0 Hz, 3H), 1.26-1.23(m, 2H), 1.19 (s, 6H), 1.18 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 149.92, 148.52, 140.42, 139.65, 128.78, 128.45, 126.07, 125.66, 124.53, 121.16, 83.05, 35.93, 24.93, 24.74, 24.68.¹⁹F NMR (376 MHz, CDCl₃) δ -57.79.Optical Rotation: [α]_D²²-18.23 (c = 0.17, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₂₂H₂₆BF₃O₃,

[M+Na]: 429.1819;found: 429.1817.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-((*R*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) propan-2-yl)-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[a]phenanthren-17(14 H)-one (2x)

white solid (80.2 mg, 95% yield), m.p. = 116 °C. dr = 97.5:2.5, (Measured by chiral HPLC analysis with the corresponding alcohol obtained after oxidation) [Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 90:10, 0.5 mL/min,

 λ = 220 nm, retention time: 31.20 min (minor) and 33.25 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.22(d, *J* = 8.0 Hz, 1H), 7.06(d, *J* = 8.0 Hz, 1H), 7.00 (s, 1H), 3.01 (sext, *J* = 7.2 Hz, 1H), 2.91-2.89 (m, 2H), 2.56-2.41 (m, 2H), 2.32-2.27 (m, 1H), 2.16-1.96 (m, 4H), 1.70-1.42 (m, 6H), 1.29 (d, *J* = 7.2 Hz, 3H), 1.22 (s, 6H), 1.21 (s, 6H), 1.16-1.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.87, 136.96, 136.05, 127.13, 125.21, 124.12, 123.95, 83.01, 50.53, 48.05, 44.35, 38.28, 35.90, 35.16, 31.63, 29.52, 26.65, 25.75, 24.68, 24.71, 24.45, 24.43, 21.61, 13.88. Optical Rotation: $[\alpha]_D^{22}$ +71.00 (c = 0.20, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₂₇H₃₉BO₃, [M+H]: 423.3065; found: 423.3073.

(*R*)-4,4,5,5-tetramethyl-2-(1,1,1-d₃-2-phenylpropyl)-1,3,2-dioxaborolane (2a-D)

colorless oil (47.3 mg, 95% yield). er = 95:5, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 500:1, 0.4 mL/min, λ = 220 nm, retention time: 12.76 min (major) and 14.41 min (minor)];¹H NMR

(400 MHz, CDCl₃) δ 7.32–7.27 (m, 4H), 7.21–7.16 (m, 1H), 3.07 (t, *J* = 8.0 Hz, 1H), 1.22-1.18 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 149.22, 128.20, 126.66, 125.70, 82.97, 35.62, 24.81, 24.73. Optical Rotation: [α]_D²²-17.55 (c = 0.49, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₂₀D₃BO₂, [M+Na]: 272.1877; found: 272.1873.

(*R*)-1,1,1-d₃-2-(2-(6-methoxynaphthalen-2-yl)propyl)-4,4,5,5-tetramethyl-1,3,2-di oxaborolane (2y-D)

white solid (59.1 mg,90% yield), m.p. = 58 °C. er = 93.5:6.5,

[Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol = 98: 2, 1.0 mL/min, λ = 254 nm, retention time: 41.26 min (minor) and 45.72 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.70 (m, 2H), 7.65 (s, 1H), 7.45–7.42 (m, 1H), 7.18–7.14 (m, 2H), 3.93 (s, 1H), 3.23 (t, *J* = 8.0 Hz, 1H), 1.33-1.26 (m, 2H), 1.19 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 157.11, 144.46, 133.13, 129.13, 129.11, 126.73, 126.38, 124.37, 118.51, 83.02, 55.22, 35.53, 24.82, 24.78. Optical Rotation: [α]_D²²-34.75 (c = 0.40, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₂₀H₂₄D₃BO₃, [M+H]: 330.2320; found: 330.2319.

(2*S*,3*S*)-3-phenylbutan-2-ol (4a)

colorless oil (21.1 mg, 70% yield). dr >99:1, er = 95:5, [Daicel ChiralpakAD-H, *n*-hexane/*i*-propanol = 98:2, 1.0 mL/min, λ = 220 nm, retention time: 12.04 min (minor) and 14.08 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.33(m, 2H), 7.27-7.23(m, 2H), 3.94-3.87(m, 1H), 2.80-2.73(m, 1H), 1.65(br, 1H), 1.37 (d, *J* = 7.2 Hz, 3H), 1.12 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.31, 128.45, 127.88, 126.46, 72.38, 47.21, 21.08, 16.08. The spectral data of the product were identical with the reported in the literature⁴.Optical Rotation: [α]p²²-0.85 (c = 1.05, EtOH), [Lit., -0.1 (c =0.9 in EtOH), (2*S*,3*S*)-isomer]⁴, confirmed as a (2*S*,3*S*)-isomer. HRMS-ESI (*m*/*z*): Calcd for C₁₀H₁₄O, [M+H]: 151.1117; found: 151.1121.

(2S,3S)-3-(4-methoxyphenyl)butan-2-ol (4b)

white solid (24.5 mg, 68% yield), m.p. = 78 °C. dr >99:1, er = MeO 93.5:6.5, [Daicel Chiralpak OC-H, *n*-hexane/*i*-propanol = 90:10, 0.5 mL/min, λ = 220 nm, retention time: 14.08 min (minor) and 14.90 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.17-7.13 (m, 2H), 6.90-6.86 (m, 2H), 3.89-3.84 (m, 1H), 3.82 (s, 3.82), 2.76-2.69 (m, 1H), 1.55 (br, 1H), 1.32 (d, *J* = 7.0 Hz, 3H), 1.10 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.16, 136.23, 128.75, 113.80, 72.46, 55.25, 46.22, 20.91, 16.14.Optical Rotation: $[\alpha]_D^{22}$ +2.71 (c = 0.185, CHCl₃). HRMS-ESI (*m/z*): Calcd for C₁₁H₁₆O₂, [M+H]: 181.1223; found: 181.1228.

(1*R*,2*S*)-1,2-diphenylpropan-1-ol (4c)

white solid (23.7 mg, 56% yield), m.p. = 57 °C. dr >99:1, er = 99:1, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 90:10, 0.5 mL/min, λ = 220 nm, retention time: 14.79 min (minor) and 15.96 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.17 (m, 10H), 4.85 (dd, *J* = 2.8 Hz, 2.8 Hz, 1H), 3.17-3.11 (m, 1H), 1.89 (br, 1H), 1.34 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.58, 142.91, 128.28, 128.14, 128.02, 127.26, 126.50, 126.35, 78.75, 47.24, 14.98.Optical Rotation: [α]_D²²+45.16 (c = 0.155, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₁₆O, [M+H]: 213.1273; found: 213.1275.

(2R,3S)-1-methoxy-3-phenylbutan-2-ol (4d)

colorless oil (28.8 mg, 80% yield). dr >99:1, er = 92:8, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 90:10, 0.5 mL/min, λ = 220 nm, retention time: 9.69 min (minor) and 10.37 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.31(m, 2H), 7.26-7.22(m, 3H), 3.88-3.82(m, 1H), 3.31 (s, 3H), 3.25-3.22(m, 1H), 3.16-3.12(m, 1H), 2.87-2.80(m, 1H), 2.72(br, 1H), 1.41 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.04, 128.53, 127.62, 126.54, 75.26, 74.76, 58.92, 43.06, 17.73.Optical Rotation: [α]_D²²+14.8 (c = 0.25, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₁H₁₆O₂,[M+H]: 181.1223; found: 181.1225.

(2*S*,3*R*)-3-phenylbutan-2-ol (4e)

colorless oil (8.4 mg, 28% yield). dr >99:1, er = 99:1, [Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 95:5, 0.5 mL/min, λ = 220 nm, retention time: 23.46 min (major) and 26.86 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34(m, 2H), 7.28-7.22(m, 3H), 3.91-3.84(m, 1H), 2.74-2.66(m, 1H), 1.29 (d, *J* = 7.0 Hz, 3H), 1.25 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.58, 128.66, 128.06, 126.46, 72.38, 47.21, 21.08, 16.08. The spectral data of the product were identical with the reported in the literature⁴. Optical Rotation: [α]_D²²+11.86 (c = 1.5, EtOH), [Lit., +19.55 (c = 1.4 in EtOH), (2*S*,3*R*)-isomer]⁴, confirmed as a

(2S,3R)-isomer.HRMS-ESI (m/z): Calcd for C₁₀H₁₄O, [M+H]: 151.1117; found: 151.1118.

(1R,2S)-1-methyl-1,2,3,4-tetrahydronaphthalen-2-ol (4f)

white solid (22.7 mg, 70% yield), m.p. = 89° C. dr >99:1, er = 98:2, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 95:5, 1.0 mL/min, λ = 220 nm, retention time: 8.51 min (minor) and 9.18 min (major)]; ¹H NMR (400 MHz, CDCl₃) § 7.24-7.13 (m, 4H), 4.19-4.14 (m, 1H), 3.11-2.98 (m, 2H), 2.93-2.85 (m, 1H), 2.06-1.91 (m, 3H), 1.35 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.36, 135.21, 128.85, 128.65, 126.04, 126.01, 70.21, 38.54, 27.31, 27.20, 16.62.Optical Rotation: $[\alpha]_D^{22}$ -53.78 (c = 0.225, CHCl₃). HRMS-ESI (*m/z*): Calcd for C₁₁H₁₄O, [M+H]: 163.1117; found: 163.1118.

(*R*)-2-methyl-4-(naphthalen-2-yloxy)butan-1-ol (4g)

white solid (35.9 mg, 78% yield), m.p. = 45 °C. er = 92:8, [Daicel Chiralpak OJ-H, n-hexane/i-propanol = 90:10, 1.0 ĒH₃ mL/min, $\lambda = 254$ nm, retention time: 30.05 min (major) and

36.93 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.74 (m, 3H), 7.49-7.35 (m, 2H), 7.18-7.16 (m, 2H), 4.25-4.14 (m, 2H), 3.61 (d, J = 5.4 Hz, 2H), 2.06-1.96 (m, 2H), 1.85 (br, 1H), 1.79-1.75 (m, 1H), 1.06 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) § 156.78, 134.58, 129.43, 129.00, 127.67, 126.74, 126.39, 123.63, 118.88, 106.71, 68.02, 66.17, 33.36, 32.81, 16.86.Optical Rotation: $[\alpha]_D^{22}$ -3.57 (c = 0.28, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₅H₁₈O₂, [M+H]: 231.1385; found: 231.1387.

(R)-4-(1H-indol-1-yl)-2-methylbutan-1-ol (4h)

. ĊH₃

yellow oil (30.5 mg, 75% yield). er = 90:10, [Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 95:5, 1.0 mL/min, λ = 254 nm, retention time: ЮН

43.08 min (minor) and 44.02 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.31-7.27 (m, 1H), 7.21-7.16 (m, 2H), 6.57 (d, J = 3.0 Hz, 1H), 4.21-4.20 (m, 2H), 3.47-3.45 (m, 2H), S19

2.08-2.02 (m, 1H), 1.81 (br, 1H), 1.68-1.65 (m, 2H), 1.04 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 135.95, 128.64, 127.72, 121.48, 121.07, 119.32, 109.44, 101.12, 67.85, 44.31, 33.69, 33.37, 16.52.Optical Rotation: [α]_D²²+11.33 (c = 0.30, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₃H₁₇NO, [M+H]: 204.1382; found: 204.1385.

(R)-2-methyl-3-phenylpropan-1-ol (4i)

colorless oil (21.1 mg, 70% yield). er = 88:12, [Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 98:2, 1.0 mL/min, λ = 220 nm, retention time: 14.51 min (major) and 15.69 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.29 (m, 2H), 7.24-7.19 (m, 2H), 3.57 (dd, *J* = 10.5, 5.8 Hz, 1H), 3.51 (dd, *J* = 10.5, 5.8 Hz, 1H), 2.79 (dd, *J* = 13.4, 6.3 Hz, 1H), 2.46 (dd, *J* = 13.4, 6.3 Hz, 1H), 2.02-1.94 (m, 1H), 1.44 (br, 1H), 0.95 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.64, 129.17, 128.29, 125.91, 67.68, 39.72, 37.82, 16.49.Optical Rotation: [α]_D²²+2.22 (c = 0.36, CHCl₃), [Lit., -3.0 (c = 0.67 in CHCl₃), (*S*)-isomer]⁵, confirmed as a (*R*)-isomer.HRMS-ESI (*m*/*z*): Calcd for C₁₀H₁₄O, [M+H]: 151.1117; found: 151.1123.

(*R*)-2-methyl-4-phenylbutan-1-ol (4j)

colorless oil (22.3 mg, 68% yield). er = 89:11, [Daicel Chiralpak AS-H, *n*-hexane/*i*-propanol = 95:5, 0.5 mL/min, λ = 220 nm, retention time: 12.80 min (minor) and 13.47 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.32 (m, 2H), 7.26-7.22 (m, 3H), 3.56 (dd, *J* = 11.2, 6.0 Hz, 1H), 3.49 (dd, *J* = 11.2, 6.0 Hz, 1H), 2.80-2.73 (m, 1H), 2.69-2.61 (m, 1H), 2.18 (br, 1H), 1.86-1.77 (m, 1H), 1.71 (sext, *J* = 6.0 Hz, 1H), 1.53-1.44 (m, 1H), 1.04 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.70, 128.42, 128.39, 125.77, 67.07, 35.37, 35.06, 33.35, 16.58.Optical Rotation: [α]_D²² +9.09 (c = 0.55, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₁H₁₆O, [M+H]: 165.1273; found: 165.1280.

(1R,2S)-1-d₃-methyl-1,2,3,4-tetrahydronaphthalen-2-ol (4f-D)

white solid(25.2 mg, 76% yield), m.p. = 90 °C.dr >99:1, er = 98:2, [Daicel Chiralpak OD-H, *n*-hexane/*i*-propanol = 95:5, 1.0 mL/min, λ = 220 nm, retention time: 9.08 min (minor) and 9.75 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.12 (m,4H), 4.19-4.14 (m, 1H), 3.06-2.97 (m, 2H), 2.92-2.86 (m, 1H), 2.04-1.94 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.27, 135.19, 128.78, 128.62, 126.01, 125.99, 70.22, 38.30, 27.38, 27.12. Optical Rotation: [α]_D²²-53.48 (c = 0.215, CHCl₃).HRMS-ESI (*m*/*z*): Calcd for C₁₁H₁₁D₃O, [M+H]: 166.1308; found: 166.1306.

(R)-2-d₃-methyl-3-phenylpropan-1-ol (4i-D)

Construction of the colorless oil (21.5 mg, 70% yield). er = 87:13, [Daicel ChiralpakOJ-H, *n*-hexane/*i*-propanol = 98:2, 1.0 mL/min, λ = 220 nm, retention time: 17.20 min (major) and 18.77 min (minor)]; ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.29 (m, 2H), 7.24-7.20 (m, 3H), 3.56 (dd, *J* = 10.5, 5.8 Hz, 1H), 3.50 (dd, *J* = 10.5, 5.8 Hz, 1H), 2.79 (dd, *J* = 13.4, 6.3 Hz, 1H), 2.46 (dd, *J* = 13.4, 6.3 Hz, 1H), 2.00-1.93 (m, 1H), 1.59 (br, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.67, 129.16, 128.28, 125.89, 67.64, 39.66, 37.58.Optical Rotation: [α]_D²²+1.95 (c = 0.41, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₀H₁₁D₃O, [M+H]: 154.1308; found: 154.1309.

6. Synthesis of (*S*)-Naproxen

Preparation of (S)-2-(6-methoxynaphthalen-2-yl)propan-1-ol (5). In the glovebox, to a 100 mL Schlenk flask with magnetic stir bar was added CuCl (10 mol %, 57 mg, 0.6 mmol), **L4** (12 mol %, 306 mg, 0.72 mmol) and 25 mL THF. The mixture was stirred 60 minutes at room temperature. To the mixture was added $B_2(pin)_2$ (2.29 g, 9 mmol), 2-Methoxy-6-vinyl-naphthalene**1y**(1.1 g, 6 mmol), CH₃I (1.27 g, 9 mmol), and MeOK (9 mmol, 0.63 g) successively (Note: MeOKwas added

slowly to prevent the vigorously exothermic reaction), finally diluted by15 mL THF.The flask was sealed with rubber stopper, removed from the glovebox and stirredat room temperature for 24 hours. The reaction mixture was filtrated through a celite pad and the solvent was removed under vacuo. The residue was dissolved in THF (30 mL) at 0 °C, then 4 M of aqueous NaOH (18 mL) and 30% H₂O₂ (6 mL) was added slowly. After addition, the reaction mixture was stirred for 6 hours at room temperature. After the reaction was completed, sat. Na₂S₂O₃ solution (15 ml) was added to quench the reaction. The mixture was extracted with EtOAc (3×60 mL) and the combined organic phase was dried over Na₂SO₄. After evaporating solvent under vacuo, the residue was purified by column chromatography on silica gel with EtOAc:Petroleum ether (1:3) to obtain the product 5 as a white solid (1.23 g, 95% yield), m.p .= 87 °C. er = 97:3, [Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol = 98:2, 1.0 mL/min, $\lambda = 254$ nm, retention time: 39.91 min (minor) and 44.21 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 5.8 Hz, 1H), 7.73 (d, J = 6.2 Hz, 1H), 7.63 (s, 1H), 7.74 (dd, J = 8.2, 1.6 Hz, 1H), 7.19-7.13 (m, 2H), 3.95 (s, 3H), 3.79 (d, J =4.6 Hz, 2H), 3.15-3.06 (m, 1H), 1.52 (br, 1H), 1.38 (d, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.45, 138.71, 133.56, 129.13, 129.06, 127.23, 126.31, 125.92, 118.93, 105.62, 68.64, 54.33, 42.38, 17.67. Optical Rotation: $[\alpha]_D^{22}$ -8.23 (c = 0.255, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₄H₁₆O₂, [M+H]: 217.1223; found: 217.1231.

Preparation of (*S*)-2-(6-Methoxy-naphthalen-2-yl)-propionic acid ((S)-Naproxen). To a 50mL Schlenk flask were added $Fe(NO_3)_3 \cdot 9H_2O$ (0.23 g, 0.57 mmol), DCE (17 mL), TEMPO (89 mg, 0.57 mmol), KCl (42.5 mg, 0.57 mmol), and 5 (1.23 g, 5.7 mmol) sequentially. After evacuated and filled in the pure O₂ for three times with a balloon, the reaction was stirred at 25 °C for 24 h. The crude reaction mixture was filtrated through a celite, the combined organic phase was evaporated

under vacuo and the residue was purified by column chromatography on silica gel with EtOAc:Petroleum ether (1:1.5) to obtain the product (*S*)-Naproxen as a white solid (1.18 g, 90% yield), m.p. = 142 °C. er = 97/3, [Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol = 95:5, 0.5 mL/min, λ = 220 nm, retention time: 54.08 min (minor) and 57.43 min (major)]; ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.71 (m, 3H), 7.42 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.16 – 7.13 (m, 2H), 3.94 (s, 3H), 3.90 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.87, 157.72, 134.88, 133.84, 129.33, 128.91, 127.26, 126.22, 126.18, 119.07, 105.59, 55.33, 45.30, 18.15.Optical Rotation: [α]_D²²+59.02 (c = 0.205, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₄H₁₄O₃, [M+H]: 231.1015; found: 231.1013.

7. Formal Synthsis of (*R*)-*ar*-Turmerone and 8-Deoxyanisatin

Preparation of (*R***)-3-p-tolylbutan-1-ol (6).** To the dried Schlenk tube with magnetic stir bar was added **2k** (130 mg, 0.5 mmol, er = 95:5). After evacuated and filled in Ar for three times, ClCH₂Br (193.5 mg, 1.5 mmol) and dried THF (1.5 mL) were added. The solution was cooled to -90 °C and added BuLi (0.6 mL, 2.5 M) very slowly. The reaction was warmed to room temperature and stirred for overnight. Quenched by saturated aq. NH₄Cl, the mixture was extracted with EtOAc (3x15 mL). The organic phase was combined and washed with saturated aq. NaCl and dried over Na₂SO₄. After the removal of solvent, the residue was dissolved in 5 mL THF and cooled to 0 °C. The aq. NaOH (5 mL, 4 M) was added and the aq H₂O₂ (2 mL, 30%w) was added dropwise. The mixture was stirred at room temperature for 2 hours and quenched by saturated aq. Na₂S₂O₃ at 0 °C. Then the mixture was extracted with EtOAc(3x15 mL), the organic phase was combined and dried over Na₂SO₄. After the removal of solvent, the residue was combined and the mixture was extracted with EtOAc(3x15 mL), the organic phase was combined and dried over Na₂SO₄. After the removal of solvent, the residue was combined and dried over Na₂SO₄. After the removal of solvent, the residue was combined and dried over Na₂SO₄. After the removal of solvent, the residue was combined and dried over Na₂SO₄. After the removal of solvent, the residue was combined and dried over Na₂SO₄. After the removal of solvent, the residue was purified by flash column chromatography with

Petroether:Acetate(4:1) as the eluent to get **6** as a colorless oil (71.3 mg, 87% yield). er = 95:5, [Daicel Chiralpak OJ-H, *n*-hexane/*i*-propanol = 98:2, 1.0 mL/min, λ = 254 nm, the environment temperature of chiral column is 40 °C, retention time: 19.22 min (minor) and 20.28 min (major)];¹H NMR (400 MHz, CDCl₃) δ 7.19-7.13 (m, 4H), 3.63-3.53 (m, 2H), 2.89 (sext, *J* = 7.2 Hz, 1H), 2.38 (s, 3H), 1.90-1.85 (m, 2H), 1.78 (br, 1H), 1.31 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.87, 135.58, 129.21, 126.86, 67.21, 41.03, 36.07, 22.58, 21.04.Optical Rotation: [α]_D²²-24.09 (c = 0.22, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₁H₁₆O, [M+H]: 165.1273; found: 165.1278.

Preparation of (*R***)-3-p-tolylbutanoic acid (7).** To a tube with magnetic stir bar was added **6** (71.3 mg, 0.435 mmol), Fe(NO₃)₃·9H₂O (17.6 mg, 0.0435 mmol), DCE (1.5 mL), TEMPO (6.8 mg, 0.0435 mmol), KCl (3.2 mg, 0.0435 mmol) sequentially. After evacuated and filled in the pure O₂ with a balloon for three times, the reaction was stirred at 25 °C for 12 h. The crude reaction mixture was filtrated through a celite, the combined organic phase was evaporated under vacuo and purified by column chromatography on silica gel with EtOAc:Petroleum ether (1:2) to obtain the product (*R*)-3-p-tolylbutanoic acid (7) as a white solid (69.6 mg, 90% yield), m.p. = 128 °C. er = 95.5:4.5, [Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol = 95:5, 0.2 mL/min, λ = 220 nm, retention time: 36.03 min (minor) and 40.28 min (major)];¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 4H), 3.29 (sext, *J* = 7.2 Hz, 1H), 2.70 (dd, *J* = 15.4 Hz, 6.8 Hz, 1H), 2.61 (dd, *J* = 15.4 Hz, 6.8 Hz, 1H), 2.37 (s, 3H), 1.35 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 179.00, 142.48, 136.04, 129.28, 126.61, 42.74, 35.77, 21.99, 21.04.Optical Rotation: [α]_D²²-44.0 (c = 0.15, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₁H₁₄O₂, [M+H]: 179.1066; found: 179.1069.

Preparation of (*R***)-methyl 3-p-tolylbutanoate (8).** To a tube with magnetic stir bar was added7 (0.2 mmol, 35.6 mg) and K₂CO₃ (0.4 mmol, 55.2 mg). After evacuated and filled in Ar for three times, DMF (1 mL) and CH₃I (0.4 mmol, 56.4 mg) were added and the mixture was stirred at 40 °C for 6 h.The reaction was quenched by addition of 3 mL H₂O and extracted with EtOAc(3x5 mL). The organic phase was combined and dried over Na₂SO₄. After the removal of solvent, the residue was purified by flash column chromatographywith petroether:Acetate(10:1) as the eluent to get colorless oil **8** (36.8 mg, 90% yield), er = 95.5:4.5, [Daicel Chiralpak AD-H, *n*-hexane/*i*-propanol = 500:1, 0.5 mL/min, λ = 254 nm, retention time: 19.21 min (minor) and 20.28 min (major)];¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 4H), 3.66 (s, 3H), 3.28 (m, 1H), 2.64 (dd, *J* = 15.1 Hz, 6.9 Hz, 1H), 2.56 (dd, *J* = 15.1 Hz, 6.9 Hz, 1H), 2.35 (s, 3H), 1.32 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.94, 142.73, 135.89, 129.21, 126.58, 51.48, 42.84, 36.04, 21.88, 21.00.Optical Rotation: [α]p²² -31.05 (c= 0.95, CHCl₃). HRMS-ESI (*m*/*z*): Calcd for C₁₂H₁₆O₂, [M+Na]:215.1048; found: 215.1052.

8. References

(1) Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. ACS Catal. 2017, 7, 2425.

(2) Su, W.; Gong, T.; Lu, X.;Xu, M.; Yu, C.;Xu, Z.; Yu, H.; Xiao, B.; Fu, Y. Angew. Chem. Int. Ed.
2015, 54, 12957.

(3) Zhang, L.; Zou, Z.; Wang, X.; Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.

- (4) Vitale, P.; Perna, F. M.; Perrone, M. G.; Scilimati, A. Tetrahedron: Asymmetry 2011, 22, 1985.
- (5) Kita, Y.; Hida, S.; Higashihara, K.; Sekhar Jena, H.; Higashida, K.; Mashima, K. Angew. Chem. Int. Ed. 2016, 55, 8299.

9. ¹H, ¹³C, ¹¹B, ¹⁹F NMR and HPLC Spectra

NMR

S26

Results				
Retention Time	Area	Area %	Height	Height %
14.610	8385510	49.98	372936	53.31
17.232	8391552	50.02	326621	46.69
Totals				
	16777062	100.00	699557	100.00

HPLC

UV1000-220nm Results

Retention Time	Area	Area %	Height	Height %
7.823	3655872	50.03	280995	53.44
8.270	3651052	49.97	244811	46.56
Totals				
	7306924	100.00	525806	100.00

1101023

100.00

7956270

6028851

100.00

874889

100.00

UV1000-220nm Results Retention Time	Area	Area %	Height	Height %
17.728 26.705	13663310 13891851	49.59 50.41	429798 255877	62.68 37.32
Totals	27555161	100.00	685675	100.00

UV1000-220nm Results				
Retention Time	Area	Area %	Height	Height %
17.632	8287359	97.16	277895	97.59
26.972	241914	2.84	6860	2.41
Totals				
	8529273	100.00	284755	100.00

UV1000-220nm				
Results				
Retention Time	Area	Area %	Height	Height %
5.363	6513047	49.62	737694	52.24
5.870	6613475	50.38	674503	47.76
Totals				
	13126522	100.00	1412197	100.00

UV1000-220nm Results				
Retention Time	Area	Area %	Height	Height %
5.515	4299249	50.03	432027	45.75
6.152	4293775	49.97	512396	54.25
Totals				
	8593024	100.00	944423	100.00

22.262	4383500	50.17	153159	46.90
Totals	8736976	100.00	326568	100.00

Retention Time	Area	Area %	Height	Height %
12.435	6619991	49.84	326466	52.45
13.997	6663677	50.16	296011	47.55
Totals				
	13283668	100.00	622477	100.00

18.882 19.817	6862882 6882652	49.93 50.07	321453 302438	51.52 48.48
Totals	13745534	100.00	623891	100.00
	13743334	100.00	025691	100.00

UV1000-220nm
Results

Results				
Retention Time	Area	Area %	Height	Height %
18.608	4791635	82.30	223087	81.92
19.550	1030709	17.70	49230	18.08
Totals				
	5822344	100.00	272317	100.00

Retention Time	Area	Area %	Height	Height %
20.115	7668416	50.00	343502	51.60
21.053	7667939	50.00	322190	48.40
Totals				
	15336355	100.00	665692	100.00

Totals				
	16232010	100.00	784570	100.00

UV	1000)-22	0nm
Res	ults		

Results				
Retention Time	Area	Area %	Height	Height %
22.275	1347045	94.90	41662	94.12
23.207	72464	5.10	2604	5.88
Totals				
	1419509	100.00	44266	100.00

Retention Time	Area	Area %	Height	Height %
22.188	16977696	49.54	475504	54.51
23.722	17292475	50.46	396887	45.49
Totals				
	34270171	100.00	872391	100.00

Retention Time	Area	Area %	Height	Height %
22.000	26219499	95.96	625606	95.23
24.300	1104451	4.04	31345	4.77
Totals				
	27323950	100.00	656951	100.00

Results				
Retention Time	Area	Area %	Height	Height %
22.980	1209098	49.91	53665	51.59
24.018	1213337	50.09	50350	48.41
Totals				
	2422435	100.00	104015	100.00

Results				
Retention Time	Area	Area %	Height	Height %
16.098	4494000	49.66	142485	51.84
17.815	4555343	50.34	132392	48.16
Totals				
	9049343	100.00	274877	100.00

UV1000-220nm Results

Area	Area %	Height	Height %
1143488	49.96	22837	51.48
1145441	50.04	21527	48.52
2288929	100.00	44364	100.00
	Area 1143488 1145441 2288929	Area Area % 1143488 49.96 1145441 50.04 2288929 100.00	Area Area % Height 1143488 49.96 22837 1145441 50.04 21527 2288929 100.00 44364

UV1000-220nm Results				
Retention Time	Area	Area %	Height	Height %
16.400	4307064	49.79	213181	51.72
17.537	4343597	50.21	199012	48.28
Totals				
	8650661	100.00	412193	100.00

19.898	80520172	50.17	1380142	45.24
Totals				
	160485666	100.00	3050820	100.00

UV1000-220nm Results				
Retention Time	Area	Area %	Height	Height %
18.718	17335309	97.45	389107	97.59
20.683	452827	2.55	9629	2.41
Totals				
	17788136	100.00	398736	100.00

Valts

7.482	908836	49.73	59112	45.96
Totals	1827667	100.00	128603	100.00

UV1000-254nm Results Retention Time	Area	Area %	Height	Height %
8.933 9.380	8137736 8143242	49.98 50.02	713445 654553	52.15 47.85
Totals	16280978	100.00	1367998	100.00
Totals	16280978	100.00	1367998	

UV1000-220nm Results Retention Time	Area	Area %	Height	Height %
30.232 32.797	4369288 4467271	49.45 50.55	66250 54861	54.70 45.30
Totals	8836559	100.00	121111	100.00
	8836559	100.00	121111	10

79293

100.00

6119519

Height 143190 131933

275123

Height % 52.05 47.95

100.00

Results		
Retention Time	Area	Area %
11.735	3256694	49.92
12.877	3267661	50.08

6524355

Totals

	400 Retention Time		400
ШÂШ	200	- 12.762	

100.00

Retention Time	Area	Area %	Height	Height %
12.762	4057592	95.32	158126	93.74
14.417	199331	4.68	10563	6.26
Totals				
	4256923	100.00	168689	100.00

75694

100.00

6656314

Results Retention Time	Area	Area %	Height	Height %
12.048	115137	5.01	4742	5.99
14.087	2184005	94.99	74362	94.01
Totals				
	2299142	100.00	79104	100.00

14.895	9498811	49.94	389085	48.43
Totals	19018568	100.00	803478	100.00

Retention Time	Area	Area %	Height	Height %
23.492	1535228	50.15	60468	53.78
26.812	1525743	49.85	51965	46.22
Totals				
	3060971	100.00	112433	100.00

Results				
Retention Time	Area	Area %	Height	Height %
8.413	2179208	49.91	178920	52.03
9.083	2186990	50.09	164933	47.97
Totals				
	4366198	100.00	343853	100.00

Retention Time	Area	Area %	Height	Height %
30.183	4176599	50.15	83959	56.26
36.858	4151475	49.85	65277	43.74
		1		
Totals				
	8328074	100.00	149236	100.00

Results				
Retention Time	Area	Area %	Height	Height %
43.470	881562	50.05	15814	53.43
45.323	879931	49.95	13783	46.57
Totals				
	1761493	100.00	29597	100.00

UV1000-254nm

67322

100.00

1281454

1174110

Totals

100.00

62490

100.00

Retention Time	Area	Area %	Height	Height %
17.078	1436981	49.93	61135	52.01
18.733	1440886	50.07	56407	47.99
Totals				
	2877867	100.00	117542	100.00

UV1000-220nm	
Results	
D ()' T'	

Retention Time	Area	Area %	Height	Height %
17.200	1284779	86.91	55037	87.17
18.777	193548	13.09	8098	12.83
Totals				
	1478327	100.00	63135	100.00

39.713 43.987	822679 828576	49.82 50.18	10342 9354	52.51 47.49
Totals				
	1651255	100.00	19696	100.00

58.592	2026484	49.83	14032	47.70
Totals	40((718	100.00	20418	100.00
	4066/18	100.00	29418	100.00

Totals				
	120921674	100.00	967301	100.00
		-		

