## Supporting information

# Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method

| Sudipta Chatterjee <sup>a</sup> , Hai Nguyen Tran <sup>b</sup> , Ohemeng-Boahen Godfred <sup>a</sup> , and Seung Han Woo <sup>a</sup> *                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>a</sup> Department of Chemical and Biological Engineering, Hanbat National University, 125  Dongseodaero, Yuseong-Gu, Daejeon 305-719, Republic of Korea               |
|                                                                                                                                                                             |
| <sup>b</sup> Sustainable Management of Natural Resources and Environment Research Group,<br>Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh |
| City, Vietnam                                                                                                                                                               |
|                                                                                                                                                                             |

-----

Tel: +82 42 821 1537; fax: +82 42 821 1593; email: <a href="mailto:shwoo@hanbat.ac.kr">shwoo@hanbat.ac.kr</a> (S.H. Woo)

<sup>\*</sup> Corresponding author:

#### Section S1. Description of adsorption kinetic models

In this study, several kinetic models were applied to mathematically describe the intrinsic adsorption constants. The non-linearized forms of the pseudo-first-order [1], pseudo-second-order [2], and Elovich [3] models, are expressed in Equations 1, 2, and 3, respectively. The linear form of the intra-particle models [4] are given in Equation 4.

$$q_{t} = q_{e}(1 - e^{-k_{1}t}) \tag{1}$$

$$q_{t} = \frac{q_{e}^{2} k_{2} t}{1 + k_{2} q_{e} t} \tag{2}$$

$$q_t = \frac{1}{\beta} \ln(1 + \alpha \beta t) \tag{3}$$

$$q_t = k_{ip}\sqrt{t} + C \tag{4}$$

where  $k_l$  (1/min),  $k_2$  (g/mg×min),  $\alpha$  (mg/g × min), and  $k_{ip}$  (mg/g×min<sup>1/2</sup>) are the rate constants of the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models, respectively;  $q_e$  and  $q_t$  are the adsorbate uptake per mass of adsorbent at equilibrium and at any time t (min), respectively;  $\beta$  (mg/g) is the desorption constant during any one experiment; and C (mg/g) is a constant describing the thickness of the boundary layer. Higher values of C correspond to a greater effect on the limiting boundary layer.

### Section S2. Description of adsorption isotherm models

In this study, the Langmuir (Eq. 5) [5], Freundlich (Eq. 6) [6], Redlich-Peterson (Eq. 7) [7], and Dubinin-Radushkevich (Eqs. 8–10) [8] models were employed to describe the adsorptive behavior of CR onto the capsules samples. To minimize the respective error functions, the non-linear optimization technique was applied for calculating the adsorption parameters from these models.

$$q_e = \frac{Q_{\text{max}}^0 K_L C_e}{1 + K_L C_e} \tag{5}$$

$$q_e = K_F C_e^n \tag{6}$$

$$q_e = \frac{K_{RP}C_e}{1 + a_{RP}C_e^g} \tag{7}$$

$$q_e = q_{DR} e^{-K_{DR} \varepsilon^2} \tag{8}$$

$$\varepsilon = RT \ln(1 + \frac{1}{C_e}) \tag{9}$$

$$E = \frac{1}{\sqrt{2K_{DR}}} \tag{10}$$

where  $q_e$  (mg/g) is the amount of CR adsorbed onto capsule at equilibrium;  $C_e$  (mg/L) is the CR concentration at equilibrium;  $Q^o_{max}$  (mg/g) is the maximum saturated monolayer adsorption capacity of adsorbent;  $K_L$  (L/mg) is the Langmuir constant related to the affinity between an adsorbent and adsorbate;  $K_F$  [(mg/g)/(L/mg)<sup>n</sup>] is the Freundlich constant, which characterizes the strength of adsorption; n (dimensionless) is a Freundlich intensity parameter;  $K_{RP}$  (L/g) and  $a_{RP}$  (mg/L)<sup>-g</sup> are the Redlich–Peterson constants; g (dimensionless) is an exponent whose value must lie between 0 and 1;  $q_{RD}$  (mg/g) is the adsorption capacity;  $K_{RD}$  (mol<sup>2</sup>/kJ<sup>2</sup>) is the constant related to the sorption energy;  $\varepsilon$  is the Polanyi potential; and E (kJ/mol) is the mean adsorption energy.



Figure S1. Chemical structure of sodium dodecyl sulfate



**Figure S2.** (a) Chemical structure of Congo Red and (b) UV-vis spectra of Congo Red solutions at different solution pH values [9])



**Figure S3.** Intra-particle diffusion plot for CR adsorption of (a) pristine capsules (S5 and S20), and (b) NaOH-treated capsules (SN5 and SN20)

Table S1. Current treatment methods used to remove dye from effluents

| Technology                                     | References |  |  |  |
|------------------------------------------------|------------|--|--|--|
| Photodegradation or photocatalytic degradation | [10, 11]   |  |  |  |
| Membrane                                       | [12, 13]   |  |  |  |
| Chemical coagulation and flocculation          | [14-16]    |  |  |  |
| Zonation                                       | [16-18]    |  |  |  |
| Biological treatment and biodegradation        | [19, 20]   |  |  |  |
| Adsorption                                     | [21-23]    |  |  |  |
| Advanced oxidation processes                   | [24, 25]   |  |  |  |
| Electrochemical processes                      | [15, 26]   |  |  |  |
| Ion exchange                                   | [15, 27]   |  |  |  |

**Table S2.** Comparison of the maximum adsorption capacity (calculated from the Langmuir equation) of treated hydrogen capsules and other adsorbents reported in the literature

| Adsorbent                       | Operation conditions |     |      |     | 00                       |       |
|---------------------------------|----------------------|-----|------|-----|--------------------------|-------|
|                                 | $C_0$                | t   | Т    |     | $- Q^{0}_{max}$ $(mg/g)$ | Ref.  |
|                                 | (mg/L)               | (h) | (°C) | pН  |                          |       |
| Chitosan-based hydrogel capsule | 100 2000             | 20  | 24   | 5.0 | 0.00                     | This  |
| treated with NaOH (SN5 sample)  | 100–3000             | 30  | 24   | 5.0 | 2592                     | study |
| Biosorbents                     |                      |     |      |     |                          |       |
| Palm Kernel Seed Coat           | 30-150               | 2   | 30   | 6.7 | 66                       | [28]  |
| Neem leaf powder                | 20-60                | 4   | 27   | 6.7 | 41                       | [29]  |
| Jute stick powder               | 5-200                | 24  | 30   | 6.0 | 36                       | [30]  |
| Wheat bran                      | 50-300               | 8.3 | 25   | 8.0 | 23                       | [31]  |
| Orange peel                     | 10-100               | 1.5 | 29   | 7.7 | 22                       | [32]  |
| Banana peel                     | 10-150               | 2   | 30   | 7.9 | 18                       | [33]  |
| Rice bran                       | 50-300               | 8.3 | 25   | 8.0 | 15                       | [31]  |
| Orange peel                     | 10-150               | 2   | 30   | 7.9 | 14                       | [33]  |
| Biochar/Hydrochar               |                      |     |      |     |                          |       |
| Rice straw biochar              | 50-5000              | 24  | 30   | 7.0 | 191                      | [34]  |
| Wood chip biochar               | 50-5000              | 24  | 30   | 7.0 | 110                      | [34]  |
| Bamboo hydrochar                | 5-100                | 12  | 25   | NA  | 97                       | [35]  |
| Korean cabbage biochar          | 50-5000              | 24  | 30   | 7.0 | 96                       | [34]  |
| Residual algae biochar          | 30-200               | 2   | 27   | 7.0 | 51                       | [36]  |
| Vermicompost biochar            | 5-200                | 6   | 25   | 7.0 | 31                       | [37]  |
| Activated carbon (AC)           |                      |     |      |     |                          |       |
| Mesoporous carbon fibers        | 50-1000              | 24  | Room | NA  | 1067                     | [38]  |
| Silkworm cocoon AC fiber        | 10-400               | 10  | Room | 3.0 | 1100                     | [39]  |
| Commercial AC                   | 200-450              | 2   | 30   | 7.4 | 491                      | [40]  |
| Commercial Darco® AC            | 50-5000              | 24  | 30   | 7.0 | 449                      | [34]  |
| Straw AC                        | 75–175               | 2   | 30   | 7.4 | 401                      | [40]  |
| Commercial AC                   | 50-200               | 12  | 30   | 7.0 | 300                      | [41]  |
| Rice husk AC                    | 75–175               | 2   | 30   | 7.4 | 238                      | [40]  |
| Coconut shell AC                | 75–175               | 2   | 30   | 7.4 | 188                      | [40]  |
| Groundnut shell AC              | 50-150               | 2   | 30   | 7.4 | 111                      | [40]  |
| Bamboo dust AC                  | 50-150               | 2   | 30   | 7.4 | 102                      | [40]  |
| Bael shell carbon               | 40-80                | 3   | 30   | 5.7 | 98                       | [42]  |
| Layer double hydroxides (LDHs)  |                      |     |      |     |                          |       |
| NMA-LDHs calcined at 600 °C     | 40-300               | 24  | 30   | 7.0 | 1250                     | [43]  |

| (Ni/Mg/Al layered double oxides)                           |          |                |      |     |      |      |
|------------------------------------------------------------|----------|----------------|------|-----|------|------|
| Flower-like porous microspheres derived from Ni/Al-LDHs    | 10-500   | 48             | 25   | NA  | 1229 | [44] |
| Magnetic polydopamine Mg/Al LDH nano-flakes                | 30–150   | 4              | 20   | 5.6 | 585  | [45] |
| Ni/Mg/Al LHHs hierarchical flower-like hollow microspheres | 40–300   | 24             | 30   | 7.0 | 286  | [43] |
| Mg-Fe-CO <sub>3</sub> -LDHs                                | 5-50     | 1              | 25   | 4.0 | 105  | [46] |
| Mg/Al-CO <sub>3</sub> -LDHs                                | 10-200   | 1              | Room | NA  | 37   | [47] |
| Zeolite and clay                                           |          |                |      |     |      |      |
| Clay mixture                                               | 50-600   | 24             | 30   | NA  | 575  | [48] |
| Bentonite                                                  | 75–300   | 2              | 25   | 6.8 | 159  | [49] |
| Na-Bentonite                                               | 50-1000  | 12             | 30   | 7.5 | 36   | [50] |
| Montmorillonite                                            | 25-100   | 12             | 30   | 7.0 | 13   | [51] |
| Commercial Ceram kaolin                                    | 25-500   | 24             | 30   | 7.5 | 7.3  | [52] |
| Commercial K15GR kaolin                                    | 25-500   | 24             | 30   | 7.5 | 6.8  | [52] |
| Commercial Q38 kaolin                                      | 25-500   | 24             | 30   | 7.5 | 5.4  | [52] |
| Kaolin                                                     | 50-1000  | 24             | 30   | 7.5 | 5.4  | [50] |
| Zeolite                                                    | 50-1000  | 24             | 30   | 7.5 | 3.6  | [50] |
| Others                                                     |          |                |      |     |      |      |
| Carbon nanotube/Mg(Al)O                                    | 200-800  | 24             | 25   | 7.0 | 1250 | [53] |
| nanocomposites                                             | 200-000  | 2 <del>4</del> | 23   | 7.0 | 1230 |      |
| Functionalized carbon nanotube                             | 200-800  | 24             | 25   | 7.0 | 882  | [53] |
| Fe(OH) <sub>3</sub> @Cellulose hybrid fibers               | 10-1000  | 24             | 25   | NA  | 689  | [54] |
| Chitosan hydrogel beads                                    | 10–1000  | 24             | 30   | 5.0 | 450  | [55] |
| impregnated with carbon nanotubes                          | 10 1000  | 21             | 50   | 5.0 | 150  | [33] |
| Polyacrylamide-modified hydroxo                            |          |                |      |     |      |      |
| aluminum/graphene composites                               | 100-500  | 12             | 35   | 3.0 | 424  | [56] |
| (AGO)                                                      |          |                |      |     |      |      |
| Chitosan hydrogel beads                                    |          |                |      |     |      |      |
| impregnated with cetyl trimethyl                           | 10–1000  | 24             | 30   | 5.0 | 386  | [57] |
| ammonium bromide                                           |          |                |      |     |      |      |
| <i>N,O</i> -carboxymethyl-chitosan                         | 200–1300 | 6              | 30   | 7.0 | 376  | [58] |
| Sodium dodecylbenzene sulfonate modified-AGO               | 100-500  | 12             | 35   | 3.0 | 314  | [56] |
| Cetyltrimethylammonium bromide modified -AGO               | 100-500  | 12             | 35   | 3.0 | 314  | [56] |
| γ-Fe <sub>2</sub> O <sub>3</sub> nanorod                   | 50-300   | 3              | Room | 5.0 | 233  | [59] |

| Guar gum-graft-poly                                        |            |    |      |     |      |      |
|------------------------------------------------------------|------------|----|------|-----|------|------|
| (acrylamide)/silica hybrid                                 | 10-200     | 2  | 35   | 3.0 | 221  | [60] |
| nanocomposite                                              |            |    |      |     |      |      |
| Chito-hyr-bead with BDS                                    | 10-1000    | 24 | 30   | 5.0 | 209  | [61] |
| Chito-hyr-bead with SDBS                                   | 10-1000    | 24 | 30   | 5.0 | 207  | [61] |
| Hollow microspheres NiO-Si                                 | 10-100     | 20 | 30   | 7.0 | 204  | [62] |
| Chito-hyr-bead with SDS                                    | 10-1000    | 24 | 30   | 5.0 | 186  | [61] |
| Chitosan-based hydrogel beads                              | 10-1000    | 24 | 30   | 5.0 | 183  | [57] |
| Hollow microspheres Ni(OH)2-Si                             | 10-100     | 20 | 30   | 7.0 | 114  | [62] |
| Chito-hyr-bead with DSS                                    | 10-1000    | 24 | 30   | 5.0 | 114  | [61] |
| FeC <sub>2</sub> O <sub>4</sub> .2H <sub>2</sub> O nanorod | 50-300     | 3  | Room | 5.0 | 103  | [59] |
| Chitosan                                                   | 200-325    | 12 | 30   | 7.0 | 81   | [51] |
| Chitosan                                                   | 200-700    | 10 | 30   | 7.0 | 81   | [58] |
| α-Fe <sub>2</sub> O <sub>3</sub> nanorod                   | 50-300     | 3  | Room | 5.0 | 78   | [59] |
| N,O-carboxymethyl-chitosan/montm                           | 100–500    | 8  | 30   | 7.0 | 74   | [63] |
| orillonite nanocomposites                                  | 100–300    | o  | 30   | 7.0 | /4   | [03] |
| pTSA-Pani@GO-CNT                                           | 25–200     | 10 | 30   | 5.0 | 67   | [64] |
| nanocomposite                                              | 25-200     | 10 | 30   | 5.0 | 07   | [04] |
| Cellulose/Fe <sub>3</sub> O <sub>4</sub> /AC composite     | 5–70       | 12 | 25   | 5.0 | 66   | [65] |
| ZrO <sub>2</sub> hollow spheres                            | 15–55      | 24 | 30   | 7.0 | 59   | [66] |
| Chitosan/montmorillonite                                   | 100-225    | 12 | 30   | 7.0 | 55   | [51] |
| nanocomposites                                             | 100–223 12 | 30 | 7.0  | 33  | [21] |      |
| $CoFe_{1.93}Gd_{0.07}O_{4}$                                | 25–120     | 3  | 20   | NA  | 26   | [67] |
| ZrO <sub>2</sub> solid spheres                             | 15–55      | 24 | 30   | 7.0 | 21   | [66] |
| ZrO <sub>2</sub> reagent                                   | 15–55      | 24 | 30   | 7.0 | 4.8  | [66] |

NA: not adjusted

Chito-hyr-bead (Chitosan hydrogel bead); SDS (sodium dodecyl sulfate); SDBS (dodecyl benzenesulfonic acid sodium salt); DS (sodium decyl sulfate), DSS (dioctyl sulfosuccinate sodium salt)

#### References

- 1. Lagergren, S., *About the theory of so-called adsorption of soluble substances*. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898. **24**(4): p. 1-39.
- 2. Blanchard, G., M. Maunaye, and G. Martin, *Removal of heavy metals from waters by means of natural zeolites*. Water Research, 1984. **18**(12): p. 1501-1507.
- 3. Roginsky, S. and Y.B. Zeldovich, *The catalytic oxidation of carbon monoxide on manganese dioxide*. Acta Phys. Chem. USSR, 1934. 1: p. 554.
- 4. Weber, W.J. and J.C. Morris, *Kinetics of adsorption on carbon from solution*. Journal of the Sanitary Engineering Division, 1963. **89**(2): p. 31-60.
- 5. Langmuir, *The adsorption of gases on plane surfaces of glass, mica and platinum.* Journal of the American Chemical Society, 1918. **40**(9): p. 1361-1403.
- 6. Freundlich, H., *Über die adsorption in lösungen*. Zeitschrift für physikalische Chemie, 1907. **57**(1): p. 385-470.
- 7. Redlich, O. and D.L. Peterson, *A useful adsorption isotherm*. J. Phys. Chem., 1959. **63**: p. 1024.
- 8. Dubinin, M.M. and L.V. Radushkevich, *Equation of the characteristic curve of activated charcoal*. Chem. Zentr., 1947. 1: p. 875.
- 9. Zhou, Q., et al., Comments on the method of using maximum absorption wavelength to calculate Congo Red solution concentration published in J. Hazard. Mater. Journal of Hazardous Materials, 2011. **198**: p. 381-382.
- 10. Lachheb, H., et al., *Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania*. Applied Catalysis B: Environmental, 2002. **39**(1): p. 75-90.
- 11. Wahi, R.K., et al., *Photodegradation of Congo Red catalyzed by nanosized TiO2*. Journal of Molecular Catalysis A: Chemical, 2005. **242**(1): p. 48-56.
- 12. Khan, M.I., et al., Removal of Congo red from aqueous solution by anion exchange membrane (EBTAC): adsorption kinetics and themodynamics. Materials, 2015. **8**(7): p. 4147-4161.
- 13. Machenbach, I., *Membrane technology for dyehouse effluent treatment*. Membrane Technology, 1998. **96**(1998): p. 7-10.
- 14. Pala, A. and E. Tokat, *Color removal from cotton textile industry wastewater in an activated sludge system with various additives.* Water Research, 2002. **36**(11): p. 2920-2925.
- 15. Lin, S.H. and M.L. Chen, *Treatment of textile wastewater by chemical methods for reuse.* Water Research, 1997. **31**(4): p. 868-876.
- 16. Lin, S.H. and C.M. Lin, *Treatment of textile waste effluents by ozonation and chemical coagulation*. Water research, 1993. **27**(12): p. 1743-1748.

- 17. Beszedits, S., *Ozonation to decolor textile effluents*. American Dyestuff Reporter, 1980. **69**(8): p. 37-&.
- 18. Gähr, F., F. Hermanutz, and W. Oppermann, *OZONATION AN IMPORTANT TECHNIQUE TO COMPLY WITH NEW GERMAN LAWS FOR TEXTILE WASTEWATER TREATMENT.* Water Science and Technology, 1994. **30**(3): p. 255-263.
- 19. Gaehr, F., F. Hermanutz, and W. Oppermann, *Ozonation–an important technique to comply with new German laws for textile wastewater treatment.* Water Science and Technology, 1994. **30**(3): p. 255-263.
- 20. Kapdan, I.K. and F. Kargi, *Simultaneous biodegradation and adsorption of textile dyestuff in an activated sludge unit.* Process Biochemistry, 2002. **37**(9): p. 973-981.
- 21. Raval, N.P., P.U. Shah, and N.K. Shah, *Adsorptive amputation of hazardous azo dye Congo red from wastewater: a critical review.* Environmental Science and Pollution Research, 2016. **23**(15): p. 14810-14853.
- 22. Tran, H.N., S.-J. You, and H.-P. Chao, *Fast and efficient adsorption of methylene* green 5 on activated carbon prepared from new chemical activation method. Journal of Environmental Management 2017. **188**: p. 322-336.
- 23. Tran, H.N., et al., *Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of*  $\pi$ - $\pi$  *interactions.* Process Safety and Environmental Protection, 2017. **107**: p. 168–180.
- 24. Ledakowicz, S., M. Solecka, and R. Zylla, *Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes*. Journal of Biotechnology, 2001. **89**(2): p. 175-184.
- 25. Galindo, C., P. Jacques, and A. Kalt, *Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2.*Journal of Photochemistry and Photobiology A: Chemistry, 2000. **130**(1): p. 35-47.
- 26. Lin, S.H. and C.F. Peng, *Treatment of textile wastewater by electrochemical method.* Water research, 1994. **28**(2): p. 277-282.
- 27. Laszlo, J.A., Preparing an ion exchange resin from sugarcane bagasse to remove reactive dye from wastewater. Textile Chemist & Colorist, 1996. **28**(5).
- 28. Oladoja, N.A. and A.K. Akinlabi, *Congo Red Biosorption on Palm Kernel Seed Coat.* Industrial & Engineering Chemistry Research, 2009. **48**(13): p. 6188-6196.
- 29. Bhattacharyya, K.G. and A. Sharma, *Azadirachta indica leaf powder as an effective biosorbent for dyes: a case study with aqueous Congo Red solutions*. Journal of Environmental Management, 2004. **71**(3): p. 217-229.
- 30. Panda, G.C., S.K. Das, and A.K. Guha, *Jute stick powder as a potential biomass for the removal of congo red and rhodamine B from their aqueous solution.* Journal of Hazardous Materials, 2009. **164**(1): p. 374-379.

- 31. Wang, X.S. and J.P. Chen, *Biosorption of Congo Red from Aqueous Solution using Wheat Bran and Rice Bran: Batch Studies.* Separation Science and Technology, 2009. **44**(6): p. 1452-1466.
- 32. Namasivayam, C., et al., *Removal of dyes from aqueous solutions by cellulosic waste orange peel.* Bioresource Technology, 1996. **57**(1): p. 37-43.
- 33. Annadurai, G., R.-S. Juang, and D.-J. Lee, *Use of cellulose-based wastes for adsorption of dyes from aqueous solutions*. Journal of Hazardous Materials, 2002. **92**(3): p. 263-274.
- 34. Sewu, D.D., P. Boakye, and S.H. Woo, *Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste*. Bioresource Technology, 2017. **224**: p. 206-213.
- 35. Li, Y., et al., *Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol.* Bioresource Technology, 2016. **207**: p. 379-386.
- 36. Nautiyal, P., K.A. Subramanian, and M.G. Dastidar, *Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry.* Journal of Environmental Management, 2016. **182**: p. 187-197.
- 37. Yang, G., et al., Removal of Congo Red and Methylene Blue from Aqueous Solutions by Vermicompost-Derived Biochars. PloS one, 2016. 11(5): p. e0154562.
- 38. Dong, Y., et al., *Synthesis of mesoporous carbon fibers with a high adsorption capacity for bulky dye molecules*. Journal of Materials Chemistry A, 2013. **1**(25): p. 7391-7398.
- 39. Li, J., et al., *Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption.* Biomass and Bioenergy, 2015. **75**: p. 189-200.
- 40. Kannan, N. and M. Meenakshisundaram, *Adsorption of Congo Red on Various Activated Carbons. A Comparative Study.* Water, Air, and Soil Pollution, 2002. **138**(1): p. 289-305.
- 41. Purkait, M.K., et al., *Removal of congo red using activated carbon and its regeneration*. Journal of Hazardous Materials, 2007. **145**(1): p. 287-295.
- 42. Ahmad, R. and R. Kumar, *Adsorptive removal of congo red dye from aqueous solution using bael shell carbon*. Applied Surface Science, 2010. **257**(5): p. 1628-1633.
- 43. Lei, C., et al., Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. Journal of Hazardous Materials, 2017. **321**: p. 801-811.
- 44. Huang, W., X. Yu, and D. Li, *Adsorption removal of Congo red over flower-like* porous microspheres derived from Ni/Al layered double hydroxide. RSC Advances, 2015. **5**(103): p. 84937-84946.

- 45. Li, J., et al., Magnetic polydopamine decorated with Mg-Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes. Journal of Materials Chemistry A, 2016. **4**(5): p. 1737-1746.
- 46. Ahmed, I.M. and M.S. Gasser, *Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH)*. Applied Surface Science, 2012. **259**: p. 650-656.
- 47. Shan, R.-r., et al., *Highly efficient removal of three red dyes by adsorption onto Mg–Al-layered double hydroxide*. Journal of Industrial and Engineering Chemistry, 2015. **21**: p. 561-568.
- 48. Vimonses, V., et al., *Enhancing removal efficiency of anionic dye by combination and calcination of clay materials and calcium hydroxide*. Journal of Hazardous Materials, 2009. **171**(1): p. 941-947.
- 49. Bulut, E., M. Özacar, and İ.A. Şengil, *Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite*. Journal of Hazardous Materials, 2008. **154**(1): p. 613-622.
- 50. Vimonses, V., et al., *Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials*. Chemical Engineering Journal, 2009. **148**(2): p. 354-364.
- 51. Wang, L. and A. Wang, *Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite*. Journal of Hazardous Materials, 2007. **147**(3): p. 979-985.
- 52. Vimonses, V., et al., *Adsorption of congo red by three Australian kaolins*. Applied Clay Science, 2009. **43**(3): p. 465-472.
- 53. Yang, S., et al., Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chemical Engineering Journal, 2015. 275: p. 315-321.
- 54. Zhao, J., et al., Fabrication and Characterization of Highly Porous Fe(OH)3@Cellulose Hybrid Fibers for Effective Removal of Congo Red from Contaminated Water. ACS Sustainable Chemistry & Engineering, 2017.
- 55. Chatterjee, S., M.W. Lee, and S.H. Woo, *Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes*. Bioresource Technology, 2010. **101**(6): p. 1800-1806.
- 56. Wu, Y., H. Luo, and H. Wang, Efficient Removal of Congo Red from Aqueous Solutions by Surfactant-Modified Hydroxo Aluminum/Graphene Composites. Separation Science and Technology, 2014. **49**(17): p. 2700-2710.
- 57. Chatterjee, S., et al., *Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide.* Bioresource Technology, 2009. **100**(11): p. 2803-2809.

- Wang, L. and A. Wang, *Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan*. Bioresource Technology, 2008. **99**(5): p. 1403-1408.
- 59. Dhal, J.P., B.G. Mishra, and G. Hota, Ferrous oxalate, maghemite and hematite nanorods as efficient adsorbents for decontamination of Congo red dye from aqueous system. International Journal of Environmental Science and Technology, 2015. **12**(6): p. 1845-1856.
- 60. Pal, S., et al., Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes. Bioresource Technology, 2015. **191**: p. 291-299.
- 61. Chatterjee, S., T. Chatterjee, and S.H. Woo, *Adsorption of Congo Red from Aqueous Solutions Using Chitosan Hydrogel Beads Formed by Various Anionic Surfactants*. Separation Science and Technology, 2011. **46**(6): p. 986-996.
- 62. Lei, C., et al., *Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.* Journal of Colloid and Interface Science, 2016. **466**: p. 238-246.
- 63. Wang, L. and A. Wang, *Adsorption behaviors of Congo red on the N,O-carboxymethyl-chitosan/montmorillonite nanocomposite*. Chemical Engineering Journal, 2008. **143**(1): p. 43-50.
- 64. Ansari, M.O., et al., *Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption.*Journal of Colloid and Interface Science, 2017. **496**: p. 407-415.
- 65. Zhu, H.Y., et al., Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 2011. 173(2): p. 494-502.
- 66. Wang, C., Y. Le, and B. Cheng, *Fabrication of porous ZrO2 hollow sphere and its adsorption performance to Congo red in water.* Ceramics International, 2014. **40**(7): p. 10847-10856.
- 67. Zhao, X., et al., Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chemical Engineering Journal, 2014. **250**: p. 164-174.
- 68. Shu, J., et al., Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. Journal of Alloys and Compounds, 2015. **633**: p. 338-346.