Supporting Information

Metal Versus Ligand Reduction in Ln³⁺ Complexes of a Mesitylene-Anchored Tris(Aryloxide) Ligand

Chad T. Palumbo,^a Dominik P. Halter,^b Vamsee K. Voora,^a Guo P. Chen,^a Alan K. Chan,^a

Megan E. Fieser,^a Joseph W. Ziller,^a Wolfgang Hieringer,^b Filipp Furche^{*},^a Karsten Meyer^{*},^b and William J. Evans^{*a}

^aDepartment of Chemistry, University of California, Irvine, California 92697-2025, United States
^bDepartment of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-University
Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D-91058 Erlangen, Germany
^cDepartment of Chemistry and Pharmacy, Theoretical Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstrasse 3, D-91058 Erlangen, Germany
Email: wevans@uci.edu, karsten.meyer@fau.de, filipp.furche@uci.edu

*To whom correspondence should be addressed.

Table of Contents

Crystallographic Details		p. S3
		L.
Table S1	Crystal data and structure refinement for 1-	p. S3
	\mathbf{Ln} (Ln = La, Ce, Pr, Sm, Yb)	
Figure S1	Molecular structure of 1-La	p. S4
Figure S2	Molecular structure of 1-Pr	p. S5
Figure S3	Molecular structure of 1-Sm	p. S6
Figure S4	Molecular structure of 1-Yb	p. S7
Table S2	Crystal data and structure refinement for 2-	p. S8
	Ln (Ln = La, Ce, Pr, Sm, Yb)	-
Figure S5	Molecular structure of 2-La	p. S9
Figure S6	Molecular structure of 2-Ce	p. S10
Figure S7	Molecular structure of 2-Pr	p. S11
Figure S8	Molecular structure of 2-Sm	p. S12
Figure S9	Molecular structure of 2-Yb	p. S13
Figure S10	Plot of 1-Ln $M-C_6$ (ring centroid) bond	p. S14
U	distances versus 6-coordinate ionic radius	I
Spectroscopic Details		p. S15
Figure S11	Plot of the $4f^{n+1}$ to $4f^n5d^1$ promotion energies of gas phase Ln^{2+} ions	p. S15
Figure S12	Experimental X-band EPR spectrum of a powdered sample of 2-La at 90 K	p. S16
Computational		
Details		p. S17
Table S3	DFT Optimized Structural Parameters for $2-Ln$ (Ln = La, Ce, Pr, Sm, Yb)	p. S17
Table S4	Difference between the experimental and computed bond lengths (Å) and angles (°) of 2-Ln (Ln = La, Ce, Pr, Sm, Yb) obtained from DFT calculations in solution phase	p. S18
Table S5	Mulliken spin-density population analysis for 2-Ln (Ln = La, Ce, Pr, Sm) obtained from DFT calculations in solution phase.	p. S18

References

p. S19

	1-La	1-Pr	1-Sm	1-Yb
Empirical formula	C ₆₃ H ₇₅ O ₃ La	C ₆₃ H ₇₅ O ₃ Pr	C ₆₃ H ₇₅ O ₃ Sm	$C_{63}H_{75}O_{3}Yb^{\bullet 1/2}(C_{4}H_{10})$ O) $^{\bullet 1/4}(C_{6}H_{14})$
Formula weight	1019.14	1021.14	1030.59	1111.87
Temperature (K)	133(2)	133(2)	133(2)	88(2)
Space group	<i>P</i> 2 ₁ / <i>c</i>	<i>P</i> 2 ₁ / <i>c</i>	P2 ₁ /c	<i>P</i> -1
(Å)	11 4010/4)	11 4(07/17)	10 702(2)	15 595(2)
a(A) $b(\Lambda)$	11.4819(4)	11.469/(1/) 36.682(6)	12.793(2) 15.680(2)	15.585(2)
$C(\mathbf{A})$	11.9433(5)	11,9101(18)	13.089(2) 29.928(4)	13.700(2) 28.332(4)
α (°)	90	90	90	105.3887(18)
eta (°)	106.7174	106.757(2).	95.944(2)	105.3887(18)
γ (°)	90	90	90	113.4791(17)
Volume ($Å^3$)	4842.0(3)	4798.2(13)	5974.7(14)	6049.9(15)
Z	4	4	4	4
$\rho_{\rm calcd} ({\rm g/cm}^3)$	1.398	1.414	1.146	1.221
$\mu (\mathrm{mm}^{-1})$	0.931	1.064	1.022	1.589
$R1^a$	0.0315	0.0414	0.0286	0.0414
$wR2^b$	0.0726	0.0986	0.0658	0.0986

Table S1. Crystal data and structure refinement for $[((^{Ad,Me}ArO)_3mes)Ln]$ (Ln = La, Pr, Sm,

Yb), **1-Ln**.

 $\frac{WR2}{\text{Definitions: }^{a}\text{R1} = \sum ||Fo| - |Fc|| / \sum |Fo|; \ ^{b}\text{wR2} = \left[\sum [w(Fo^{2} - Fc^{2})^{2}] / \sum [w(Fo^{2})^{2}] \right]^{1/2}.}$

X-ray Data Collection, Structure Solution and Refinement for [((^{Ad,Me}ArO)₃mes)La], **1-La**.

A colorless crystal of approximate dimensions 0.175 x 0.162 x 0.060 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis.

Hydrogen atoms were included using a riding model.

At convergence, wR2 = 0.0726 and Goof = 1.039 for 610 variables refined against 11962 data (0.75 Å), R1 = 0.0315 for those 10110 data with I > $2.0\sigma(I)$.

Figure S1. Molecular structure of $[((^{Ad,Me}ArO)_3mes)La]$, **1-La**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for [((^{Ad,Me}ArO)₃mes)Pr], **1-Pr**.

A yellow crystal of approximate dimensions 0.100 x 0.137 x 0.337 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

Least-squares analysis yielded wR2 = 0.1265 and Goof = 1.015 for 610 variables refined against 10621 data (0.78Å), R1 = 0.0523 for those 7114 data with I > 2.0σ (I).

Figure S2. Molecular structure of $[((^{Ad,Me}ArO)_3mes)Pr]$, **1-Pr**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for [((^{Ad,Me}ArO)₃mes)Sm], **1-Sm**.

A yellow crystal of approximate dimensions 0.097 x 0.143 x 0.276 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (20 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/m and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model.

At convergence, wR2 = 0.0658 and Goof = 1.000 for 610 variables refined against 13192 data (0.78Å), R1 = 0.0286 for those 10480 data with I > 2.0σ (I).

There were several high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that diethyether, tetrahydrofuran or hexane solvents were present. The SQUEEZE⁶ routine in the PLATON⁷ program package was used to account for the electrons in the solvent accessible voids.

Figure S3. Molecular structure of $[((^{Ad,Me}ArO)_3mes)Sm]$, **1-Sm**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for [((^{Ad,Me}ArO)₃mes)Yb], **1-Yb**.

An orange crystal of approximate dimensions 0.118 x 0.200 x 0.254 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (60 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P\bar{1}$ was assigned and later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. There were two molecules of the formula-unit present and one-half molecule of diethylether solvent and one-quarter molecule of hexane solvent. The hexane molecule was located about an inversion center.

At convergence, wR2 = 0.0986 and Goof = 1.021 for 1279 variables refined against 24713 data (0.80 Å), R1 = 0.0414 for those 17489 data with I > 2.0σ (I).

There were several high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that diethylether, hexane, toluene and tetrahydrofuran solvents were present. The SQUEEZE⁶ routine in the PLATON⁷ program package was used to account for the electrons in the solvent accessible voids.

Figure S4. Molecular structure of $[((^{Ad,Me}ArO)_3mes)Yb]$, **1-Yb**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

	2-La	2-Ce	2-Pr	2-Sm	2-Yb
Empirical formula	$C_{81}H_{111}LaKN_2$	C ₈₁ H ₁₁₁ CeKN ₂	C ₈₁ H ₁₁₁ KN ₂ O ₉	$C_{81}H_{111}KN_2O_9Sm\bullet C_4H$	$C_{81}H_{111}KN_2O_9Yb\bullet C_4H$
	O_9	O_9	Pr	$_{10}\mathbf{O}$	$_{10}\mathbf{O}$
Formula weight	1434.72	1435.93	1436.72	1520.28	1542.97
Temperatu re (K)	133(2)	88(2)	133(2)	88(2)	133(2)
Space group	P2 ₁ 3	P2 ₁ 3	P2 ₁ 3	P2 ₁ 3	P2 ₁ 3
a (Å)	19.755(3)	19.7828(19)	19.7501(17)	19.79747(10)	19.755(3)
b (Å)	19.755(3)	19.7828(19)	19.7501(17)	19.79747(10)	19.755(3)
c (Å)	19.755(3)	19.7828(19)	19.7501(17)	19.79747(10)	19.755(3)
α (°)	90	90	90	90	90
β (°)	90	90	90	90	90
γ (°)	90	90	90	90	90
Volume $(Å^3)$	7710(3)	7742(2)	7704(2)	7756.2(12)	7710(4)
Z	4	4	4	4	4
ρ_{calcd} (g/cm ³)	1.236	1.232	1.239	1.302	1.329
μ (mm ⁻¹)	0.663	0.697	0.742	0.870	1.326
$R1^a$	0.0577	0.0378	0.0367	0.0374	0.0253
$wR2^b$	0.1686	0.0852	0.897	0.0965	0.0591

Table S2. Crystal data and structure refinement for $[K(2.2.2\text{-cryptand})][((^{Ad,Me}ArO)_3mes)Ln]$ (Ln = La, Ce, Pr, Sm, Yb), **2-Ln**.

 $\frac{WR2}{\text{Definitions: }^{a}R1 = \sum ||Fo| - |Fc|| / \sum |Fo|; \ ^{b}wR2 = \left[\sum [w(Fo^{2} - Fc^{2})^{2}] / \sum [w(Fo^{2})^{2}]\right]^{1/2}}.$

X-ray Data Collection, Structure Solution and Refinement for $[K(2.2.2-cryptand)][((^{Ad,Me}ArO)_3mes)La], 2-La.$

A red crystal of approximate dimensions 0.093 x 0.112 x 0.202 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a hemisphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The systematic absences were consistent with the cubic space group $P2_13$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule and counter-ion were located on three-fold rotation axes.

Least-squares analysis yielded wR2 = 0.1686 and Goof = 1.063 for 285 variables refined against 4391 data (0.85), R1 = 0.0577 for those 3523 data with $I > 2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.⁸

Figure S5. Molecular structure of $[K(2.2.2\text{-cryptand})][((^{Ad,Me}ArO)_3mes)La]$, **2-La**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for $[K(2.2.2-cryptand)][((^{Ad,Me}ArO)_3mes)Ce], 2-Ce.$

A red crystal of approximate dimensions 0.158 x 0.272 x 0.330 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (60 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The systematic absences were consistent with the cubic space group $P2_13$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule and counter-ion were located on three-fold rotation axes. The cerium atom was disordered approximately 0.95:0.05 and included with two components to account for the disorder. Ce(2) was assigned an isotropic thermal parameter.

At convergence, wR2 = 0.0852 and Goof = 1.155 for 287 variables refined against 4923 data (0.82), R1 = 0.0378 for those 4709 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.⁸

There were several high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that diethylether or tertahydrofuran was present. The SQUEEZE⁶ routine in the PLATON⁷ program package was used to account for the electrons in the solvent accessible voids.

Figure S6. Molecular structure of $[K(2.2.2\text{-cryptand})][((^{Ad,Me}ArO)_3mes)Ce]$, **2-Ce**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for $[K(2.2.2-cryptand)][((^{Ad,Me}ArO)_3mes)Pr]$, **2-Pr**.

A red crystal of approximate dimensions 0.185 x 0.244 x 0.352 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (60 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The systematic absences were consistent with the cubic space group $P2_13$ that was later determined to be correct.

The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule and counter-ion were located on three-fold rotation axes. The praseodymium atom was disordered approximately 0.96:0.04 and included with two components to account for the disorder. Pr(2) was assigned an isotropic thermal parameter.

At convergence, wR2 = 0.0897 and Goof = 1.175 for 287 variables refined against 4872 data (0.82), R1 = 0.0367 for those 4729 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.⁸

There were several high residuals present in the final difference-Fourier map. It was not possible to determine the nature of the residuals although it was probable that diethylether or tertahydrofuran was present. The SQUEEZE⁶ routine in the PLATON⁷ program package was used to account for the electrons in the solvent accessible voids.

Figure S7. Molecular structure of $[K(2.2.2\text{-cryptand})][((^{Ad,Me}ArO)_3mes)Pr]$, **2-Pr**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for $[K(2.2.2-cryptand)][((^{Ad,Me}ArO)_3mes)Sm]$, **2-Sm**.

A red crystal of approximate dimensions 0.280 x 0.305 x 0.318 mm was mounted in a cryoloop and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (30 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The systematic absences were consistent with the cubic space group $P2_13$ that was later determined to be correct.

The structure was solved by dual space methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule and counter-ion were located on three-fold rotation axes. An ether solvent molecule was disordered about a three-fold rotation axis and included with partial site-occupancy-factors.

At convergence, wR2 = 0.0965 and Goof = 1.136 for 297 variables refined against 6196 data (0.76), R1 = 0.0374 for those 6012 data with I > $2.0\sigma(I)$. The absolute structure was assigned by refinement of the Flack parameter.⁸

Figure S8. Molecular structure of $[K(2.2.2\text{-cryptand})][((^{Ad,Me}ArO)_3mes)Sm]$, **2-Sm**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

X-ray Data Collection, Structure Solution and Refinement for $[K(2.2.2-cryptand)][((^{Ad,Me}ArO)_3mes)Yb]$, **2-Yb**.

A green crystal of approximate dimensions 0.093 x 0.138 x 0.152 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (90 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The systematic absences were consistent with the cubic space group $P2_13$ that was later determined to be correct.

The structure was solved by dual space methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. The molecule and counter-ion were located on three-fold rotation axes. An ether solvent molecule was disordered about a three-fold rotation axis and included with partial site-occupancy-factors.

At convergence, wR2 = 0.0591and Goof = 1.100 for 297 variables refined against 5908 data (0.77), R1 = 0.0253 for those 5565 data with I > 2.0σ (I). The absolute structure was assigned by refinement of the Flack parameter.⁸

Figure S9. Molecular structure of $[K(2.2.2\text{-cryptand})][((^{Ad,Me}ArO)_3mes)Yb]$, **2-Yb**, with thermal ellipsoids drawn at the 50% probability level and hydrogen atoms omitted for clarity.

Figure S10. Plot of M–C₆(ring centroid) bond distances versus 6-coordinate ionic radius.⁹

Figure S11. Plot of the $4f^{n+1}$ to $4f^n5d^1$ promotion energies¹⁰ (only an estimated energy is available for Dy) vs the differences in Ln–(Cp' centroid) distances of $(Cp'_3Ln)^{1-}$ and Cp'_3Ln .^{11,12} The gray dashed line indicates the barrier in promotion energies to reduce the $4f^n$ Cp'_3Ln to a $4f^{n+1}$ (blue squares on right) or $4f^n5d^1$ (red squares on left) configuration of $(Cp'_3Ln)^{1-}$.

Figure S12. Experimental X-band EPR spectrum of a powdered sample of **2-La** at 90 K (Mode: perpendicular; g = 2.001; A = 3.0 G; v = 8.967 GHz; P = 1.00 mW; modulation amplitude = 0.20 G).

DFT-based structural parameters and populations analysis of 2-Ln complexes:

	2-La	2-Ce	2-Pr	2-Sm	2-Yb
М–О	2.32	2.26	2.30	2.27	2.17
M–Cnt	2.41	2.31	2.38	2.42	2.27
M–Carene	2.80	2.72	2.78	2.81	2.68
M out of O ₃	0.49	0.55	0.49	0.42	0.56
plane ^{<i>a</i>}					
О-М-О	115.7	114.3	115.5	116.7	113.6
Angle					
Largest C ₆	15.0	7.7	7.5	3.4	3.4
Torsion					
Angle ^b					

Table S3. Computed bond lengths (Å) and angles (°) of **2-Ln** (Ln = La, Ce, Pr, Sm, Yb) obtained from DFT calculations in solution phase

^{*a*} Distance of M from the plane defined by the three O atoms of the $((^{Ad,Me}ArO)_3mes)^{3-}$ ligand.

The largest dihedral angle between adjacent three carbon plane in the mesitylene ring.

2-La	2-Ce	2-Pr	2-Sm	2-Yb
-0.05	0.00	-0.06	0.00	0.04
0.05	0.10	0.02	0.15	0.14
0.05	0.08	0.02	0.12	0.12
-0.06	-0.04	-0.02	-0.15	-0.12
0.8	0.8	-0.4	1.8	2.5
-5.2	3.8	3.4	1.4	1.4
	2-La 0.05 0.05 0.05 0.06 0.8 5.2	2-La 2-Ce -0.05 0.00 0.05 0.10 0.05 0.08 -0.06 -0.04 0.8 0.8 -5.2 3.8	2-La2-Ce2-Pr -0.05 0.00 -0.06 0.05 0.10 0.02 0.05 0.08 0.02 -0.06 -0.04 -0.02 0.8 0.8 -0.4 -5.2 3.8 3.4	2-La2-Ce2-Pr2-Sm -0.05 0.00 -0.06 0.00 0.05 0.10 0.02 0.15 0.05 0.08 0.02 0.12 -0.06 -0.04 -0.02 -0.15 0.8 0.8 -0.4 1.8 -5.2 3.8 3.4 1.4

Table S4. Difference between the experimental and computed bond lengths (Å) and angles (°) of **2-Ln** (Ln = La, Ce, Pr, Sm, Yb) obtained from DFT calculations in solution phase

^{*a*} Distance of M from the plane defined by the three O atoms of the $((^{Ad,Me}ArO)_3mes)^{3-}$ ligand.

^b The largest dihedral angle between adjacent three carbon plane in the mesitylene ring.

Table S5. Mulliken spin-density population analysis for 2-Ln (Ln = La, Ce, Pr, Sm) obtainedfrom DFT calculations in solution phase.

	2-La	2-Ce	2-Pr	2-Sm
Carene	0.87	0.80	0.49	0.23
М	0.08	1.21	2.54	5.79

References

- (1) APEX2 Version 2014.1-1 ed.; Bruker AXS, Inc.: Madison, WI, 2014.
- (2) SAINT Version 8.34a ed.; Bruker AXS, Inc.: Madison, WI, 2013.
- (3) Sheldrick, G. M.; Bruker AXS, Inc.: Madison, WI, 2014; Vol. SADABS, Version 2014/4.

(4) Sheldrick, G. M.; SHELXTL, Version 2014/6 ed.; Bruker AXS, Inc.: Madison, WI, 2014.

(5) International Tables for X-Ray Crystallography, 1992, Vol. C. ed.; Dordrecht: Kluwer Academic Publishers.

(6) Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Cryst.* **2015**, *C71*, 9-19.

(7) Spek, A. L. Structure validation in chemical crystallography. *Acta. Cryst.* **2009**, *D65*, 148-155.

(8) Parsons, S.; Flack, H. D.; and Wagner, T. Use of intensity quotients and differences in absolute structure refinement. *Acta Cryst.* **2013**, *B69*, 249-259.

(9) Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Cryst.* **1976**, *A32*, 751-767.

(10) Dorenbos, P. $f \rightarrow d$ transition energies of divalent lanthanides in inorganic compounds. J. Phys.: Condens. Matter 2003, 15, 575-594.

(11) MacDonald, M. R.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Completing the series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr^{2+} , Gd^{2+} , Tb^{2+} , and Lu^{2+} . *J. Am. Chem. Soc.* **2013**, *135*, 9857-9868.

(12) Fieser, M. E.; MacDonald, M. R.; Krull, B. T.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. Structural, Spectroscopic, and Theoretical Comparison of the Traditional vs Recently Discovered Ln^{2+} Ions in the [K(2.2.2-cryptand)][(C₅H₄SiMe₃)₃Ln] Complexes: The Variable Nature of Dy²⁺ and Nd²⁺. *J. Am. Chem. Soc.* **2015**, *137*, 369-382.