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Figure S1. 1H NMR spectrum of 6 
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Figure S2. 1H NMR spectrum of (±)-7 

 

 

Figure S3. 13C NMR spectrum of (±)-7 
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Figure S4. 1H NMR Spectrum of (±)-8 

 

 

Figure S5. 13C NMR spectrum of (±)-8 
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Figure S6. 1H NMR spectrum of (+)-9 

 

 

 

Figure S7. 13C NMR spectrum of (+)-9 
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Figure S8. 1H NMR spectrum of (±)-10 

 

 

Figure S9. 13C NMR spectrum of (±)-10
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Figure S10. 1H NMR spectrum of (±)-11 

 

 

Figure S11. 13C NMR spectrum of (±)-11 
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Figure S12. 1H NMR spectrum of (+)-16 

 

 

 

Figure S13. 13C NMR spectrum of (+)-16 



S9 
 

 

 Figure S14. 1H NMR spectrum of (+)-5 

 

Figure S15. 13C NMR spectrum of (+)-5 
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 Figure S16. 1H NMR spectrum of (+)-4 

 

 

Figure S17. 13C NMR spectrum of (+)-4 
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Figure S18. 1H NMR spectrum of (+)-17 

 

 

 

 Figure S19. 13C NMR spectrum of (+)-17 
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Figure S20. 1H NMR spectrum of silyl-protected taxoid 18 
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Figure S21. 1H NMR Spectrum of 2 

 

 

 

Figure S22. 13C NMR Spectrum of 2 
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Figure S23. 1H NMR spectrum of 23 

 

Figure S24. 13C NMR spectrum of 23 
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Figure S25. 1H NMR spectrum of 19 

 

 

 

Figure S26. 13C NMR spectrum of 19 
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Figure S27. 1H NMR spectrum of 20 

 

Figure S28. 13C NMR spectrum of 20 
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Figure S29. 1H NMR spectrum of 21 

 

Figure S30. 13C NMR spectrum of 21 
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Figure S31. 1H NMR spectrum of 22’ 

 

Figure S32. 13C NMR spectrum of 22’ 
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Figure S33. Assignment of regiochemistry for the regioisomers a.) (±)-11 and b.) (±)-10, 
utilizing the splitting patterns due to the presence of NMR active Sn isotopes. Included in the 
figure are expansions of the 1H NMR peaks used to make these assignments. The NMR excerpt 
to the left of the structure corresponds to the Sn-1H J coupling denoted on the structure in red, 
while those on the right correspond to the Sn-1H J values denoted in blue.  The resolution of the 
satellite peaks is too low to distinguish between the 119Sn and 117Sn isotopes, so the Sn-1H 
coupling constants were calculated from the apex of the broad satellite peaks.  Additionally, 
allylic 1H-1H coupling can be seen between the two peaks, and the J value for this coupling in 
each structure is shown in green. 
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Figure S34. Assignment of regiochemistry for the regioisomers a.) (+)-17 and b.) (+)-4, 
utilizing the splitting patterns due to the presence of NMR active Sn isotopes. Included in the 
figure are expansions of the 1H NMR peaks used to make these assignments. The NMR excerpt 
to the left of the structure corresponds to the Sn-1H J coupling denoted on the structure in red, 
while those on the right correspond to the Sn-1H J values denoted in blue.  The resolution of the 
satellite peaks is too low to distinguish between the 119Sn and 117Sn isotopes, so the Sn-1H 
coupling constants were calculated from the apex of the broad satellite peaks.  Additionally, 
allylic 1H-1H coupling can be seen between the two peaks, and the J value for this coupling in 
each structure is shown in green. 
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Figure S35. Chiral HPLC trace of racemic (±)-9 (blue) and enantioenriched (+)-9 (green), 
clearly demonstrating the enantioselectivity of the chiral ester enolate-imine cyclocondensation. 
Enantiomeric purity was assessed by normal phase HPLC on a Shimadzu LC-2010A with a 
chiracel OD-H column. The mobile phase was hexanes-IPA with an isocratic ratio of 98:2. The 
analyses were performed at a flow rate of 0.6 ml/min with the UV detector set at 210 nm. 
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Figure S36. HPLC trace of 2. Purity of 2 was analyzed using LC/HRMS with a Kinetex PFP 
column (100Å, 2.6µm, 100x2mm/mm) using background subtraction of pure methanol. The 
mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was performed at a 
flow rate of 0.4 mL/min using the following gradient: t=0–5 min: 60% MeOH; t=5–15 min: 60–
65% MeOH; t=15–20 min: 65–70% MeOH; t=20–30 min: 70–75% MeOH; t=30–40 min: 75–
95% MeOH; t=40–50 min: 95% MeOH. The UV detector was set for 215.4 and 254.4 nm. 
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Figure S37. HPLC trace of 1, synthesized by known literature method.1 Purity of 1 was analyzed 
using LC-UV-TOF (HRMS) with a Kinetex PFP column (100Å, 2.6µm, 100x2mm/mm) using 
background subtraction of pure methanol. The mobile phase was 10 mM aqueous ammonium 
acetate and MeOH. Analysis was performed at a flow rate of 0.4 mL/min using the following 
gradient: t=0–5 min: 60% MeOH; t=5–15 min: 60–65% MeOH; t=15–20 min: 65–70% MeOH; 
t=20–30 min: 70–75% MeOH; t=30–40 min: 75–95% MeOH; t=40–50 min: 95% MeOH. The 
UV detector was set for 215.4 and 254.4 nm. 
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Figure S38. HPLC-UV chromatogram of the Stille coupling reaction mixture using CH3I (1 
equiv.) at 220 nm using an Agilent LC-UV-TOF (HRMS) instrument with a Kinetex PFP 
column (100 Å, 2.6 µm, 150x2.1 mm/mm) at 30 °C using background subtraction of pure 
methanol. The mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was 
performed at a flow rate of 0.38 mL/min using the following gradient: t=1-10 min, MeOH 60%; 
t=10-15 min, MeOH 60-70%; t=15-25 min, MeOH t=70-75%, t=25-35 min, MeOH t=75-95 %; 
t=35-45 min, 95-96.5%; t=45-48 min, MeOH 96.5-60%. Note: The side product eluted at 30.95 
min was not a taxoid based on the fragmentation patterns as well as higher molecular weight in 
its mass spectrum.  
.  
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Figure S39. HPLC-UV chromatogram of the rapid Stille coupling reaction mixture using CH3I 
(0.1 equiv) at 215 nm using an Agilent LC-UV-TOF (HRMS) instrument with a Kinetex PFP 
column (100 Å, 2.6 µm, 100x2 mm/mm) using background subtraction of pure methanol. The 
mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was performed at a 
flow rate of 0.4 mL/min using the following gradient: t=0-5 min: 60% MeOH; t=5-15 min: 60-
65% MeOH; t=15-20 min: 65-70% MeOH; t=20-30 min: 70- 75% MeOH; t=30-40 min: 75-95% 
MeOH; t=40-50 min: 95% MeOH.  

 


