Synthesis of a Next-Generation Taxoid by Rapid Methylation Amenable for ¹¹C-Labeling

Joshua D. Seitz,[†] Tao Wang,[†] Jacob G. Vineberg,[†] Tadashi Honda,^{†,‡} and Iwao Ojima*^{†,‡}

[†]Department of Chemistry, Stony Brook University - State University of New York, Stony Brook, NY 11794-3400

[‡]Institute of Chemical Biology and Drug Discovery, Stony Brook University - State University of New York, Stony Brook, NY 11794-3400

Table of Contents

Pages S2-S18	¹ H and ¹³ C NMR spectra of new compounds
Page S19-S20	Regiochemistry assignments for vinylstannanes
Page S21	Chiral HPLC of (±)- 9 and (+)- 9
Pages S22-S23	LC-UV-TOF analysis for the methylation of 2
Page S24-S25	HPLC-UV chromatograms of the Stille coupling products

Figure S1. ¹H NMR spectrum of 6

Figure S3. ¹³C NMR spectrum of (\pm) -7

Figure S5. ¹³C NMR spectrum of (\pm) -8

Figure S7. ¹³C NMR spectrum of (+)-9

ppm

Figure S8. ¹H NMR spectrum of (\pm) -10

Figure S9. ¹³C NMR spectrum of (\pm) -10

Figure S10. ¹H NMR spectrum of (\pm) -11

Figure S11. ¹³C NMR spectrum of (\pm) -11

Figure S12. ¹H NMR spectrum of (+)-16

Figure S13. ¹³C NMR spectrum of (+)-16

Figure S15. ¹³C NMR spectrum of (+)-5

Figure S17. ¹³C NMR spectrum of (+)-4

Figure S18. ¹H NMR spectrum of (+)-17

Figure S19. ¹³C NMR spectrum of (+)-17

Figure S20. ¹H NMR spectrum of silyl-protected taxoid 18

Figure S21. ¹H NMR Spectrum of 2

Figure S22. ¹³C NMR Spectrum of 2

Figure S23. ¹H NMR spectrum of 23

Figure S24. ¹³C NMR spectrum of 23

Figure S26. ¹³C NMR spectrum of 19

Figure S27. ¹H NMR spectrum of 20

Figure S28. ¹³C NMR spectrum of 20

Figure S29. ¹H NMR spectrum of 21

Figure S30. ¹³C NMR spectrum of 21

Figure S31. ¹H NMR spectrum of 22'

Figure S32. ¹³C NMR spectrum of 22'

Figure S33. Assignment of regiochemistry for the regioisomers *a.*) (±)-11 and *b.*) (±)-10, utilizing the splitting patterns due to the presence of NMR active Sn isotopes. Included in the figure are expansions of the ¹H NMR peaks used to make these assignments. The NMR excerpt to the left of the structure corresponds to the Sn-¹H J coupling denoted on the structure in red, while those on the right correspond to the Sn-¹H J values denoted in blue. The resolution of the satellite peaks is too low to distinguish between the ¹¹⁹Sn and ¹¹⁷Sn isotopes, so the Sn-¹H coupling constants were calculated from the apex of the broad satellite peaks. Additionally, allylic ¹H-¹H coupling can be seen between the two peaks, and the J value for this coupling in each structure is shown in green.

Figure S34. Assignment of regiochemistry for the regioisomers *a.*) (+)-17 and *b.*) (+)-4, utilizing the splitting patterns due to the presence of NMR active Sn isotopes. Included in the figure are expansions of the ¹H NMR peaks used to make these assignments. The NMR excerpt to the left of the structure corresponds to the Sn-¹H J coupling denoted on the structure in red, while those on the right correspond to the Sn-¹H J values denoted in blue. The resolution of the satellite peaks is too low to distinguish between the ¹¹⁹Sn and ¹¹⁷Sn isotopes, so the Sn-¹H coupling constants were calculated from the apex of the broad satellite peaks. Additionally, allylic ¹H-¹H coupling can be seen between the two peaks, and the J value for this coupling in each structure is shown in green.

Figure S35. Chiral HPLC trace of racemic (\pm) -9 (blue) and enantioenriched (+)-9 (green), clearly demonstrating the enantioselectivity of the chiral ester enolate-imine cyclocondensation. Enantiomeric purity was assessed by normal phase HPLC on a Shimadzu LC-2010A with a chiracel OD-H column. The mobile phase was hexanes-IPA with an isocratic ratio of 98:2. The analyses were performed at a flow rate of 0.6 ml/min with the UV detector set at 210 nm.

Figure S36. HPLC trace of **2**. Purity of **2** was analyzed using LC/HRMS with a Kinetex PFP column (100Å, 2.6µm, 100x2mm/mm) using background subtraction of pure methanol. The mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was performed at a flow rate of 0.4 mL/min using the following gradient: t=0–5 min: 60% MeOH; t=5–15 min: 60–65% MeOH; t=15–20 min: 65–70% MeOH; t=20–30 min: 70–75% MeOH; t=30–40 min: 75–95% MeOH; t=40–50 min: 95% MeOH. The UV detector was set for 215.4 and 254.4 nm.

Figure S37. HPLC trace of **1**, synthesized by known literature method.¹ Purity of **1** was analyzed using LC-UV-TOF (HRMS) with a Kinetex PFP column (100Å, 2.6µm, 100x2mm/mm) using background subtraction of pure methanol. The mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was performed at a flow rate of 0.4 mL/min using the following gradient: t=0–5 min: 60% MeOH; t=5–15 min: 60–65% MeOH; t=15–20 min: 65–70% MeOH; t=20–30 min: 70–75% MeOH; t=30–40 min: 75–95% MeOH; t=40–50 min: 95% MeOH. The UV detector was set for 215.4 and 254.4 nm.

Figure S38. HPLC-UV chromatogram of the Stille coupling reaction mixture using CH₃I (1 equiv.) at 220 nm using an Agilent LC-UV-TOF (HRMS) instrument with a Kinetex PFP column (100 Å, 2.6 μ m, 150x2.1 mm/mm) at 30 °C using background subtraction of pure methanol. The mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was performed at a flow rate of 0.38 mL/min using the following gradient: t=1-10 min, MeOH 60%; t=10-15 min, MeOH 60-70%; t=15-25 min, MeOH t=70-75%, t=25-35 min, MeOH t=75-95 %; t=35-45 min, 95-96.5%; t=45-48 min, MeOH 96.5-60%. Note: The side product eluted at 30.95 min was not a taxoid based on the fragmentation patterns as well as higher molecular weight in its mass spectrum.

Figure S39. HPLC-UV chromatogram of the rapid Stille coupling reaction mixture using CH₃I (0.1 equiv) at 215 nm using an Agilent LC-UV-TOF (HRMS) instrument with a Kinetex PFP column (100 Å, 2.6 μ m, 100x2 mm/mm) using background subtraction of pure methanol. The mobile phase was 10 mM aqueous ammonium acetate and MeOH. Analysis was performed at a flow rate of 0.4 mL/min using the following gradient: t=0-5 min: 60% MeOH; t=5-15 min: 60-65% MeOH; t=15-20 min: 65-70% MeOH; t=20-30 min: 70-75% MeOH; t=30-40 min: 75-95% MeOH; t=40-50 min: 95% MeOH.