Supporting information

Electrochemical Reduction of a Spinel-type Manganese Oxide Cathode in Aqueous Electrolytes with Ca²⁺ or Zn²⁺

Gene M. Nolis,^{1, 2} Abdullah Adil,¹ Hyun Deog Yoo,^{1, 2} Linhua Hu,^{1, 2} Ryan D. Bayliss,^{1, 2} Saul H. Lapidus,³ Lisa Berkland,¹ Patrick J. Phillips,^{1, 2} John W. Freeland,³ Chunjoong Kim,^{1, 2} Robert F. Klie^{1, 2} and Jordi Cabana^{*,1, 2}

Affiliations:

¹ Department of Chemistry University of Illinois at Chicago Chicago, IL 60607, USA. *Corresponding author e-mail: jcabana@uic.edu

²Joint Center for Energy Storage Research Argonne National Laboratory Argonne, IL 60439, USA.

³X-ray Science Division Advanced Photon Source Argonne National Laboratory Argonne, IL 60439, USA.

Figure S1. Powder X-ray diffraction (PXRD) of cubic spinel $LiMn_2O_4$ (black) and Mn_2O_4 (red). Asterisks (*) mark diffraction peaks of stainless steel mesh current collector.

Figure S2. Galvanostatic charging of cubic spinel LiMn₂O₄ to completely remove Li from the structure.

Figure S3. SEM image of parent spinel LiMn₂O₄ purchased from NEI Co.

Figures S4. Voltage profiles for the electrochemical reduction of Mn_2O_4 in slightly acidic Ca (a) or Zn (b) electrolytes.

Figure S5. Powder X-ray diffraction of Mn_2O_4 host: pristine (black line) and electrochemically reduced in acidic Ca (red) and Zn (black) aqueous. * denotes stainless steel diffraction peaks from the current collector.

Figure S6. TEM image of reduced spinel Mn_2O_4 (a) in acidic 1 M Ca(NO₃)₂ and (b) 1 M Zn(NO₃)₂ aqueous electrolytes.