Supporting Information

Cobalt Sulphide Nanotubes (Co_9S_8) Decorated with Amorphous MoS_x as Highly Efficient Hydrogen Evolution Electrocatalyst

Liqian Wu^a, Kaiyu Zhang^a, Tingting Wang^a, Xiaobing Xu^{a, b}, Yuqi Zhao^a, Yuan Sun^a, Wei Zhong^{a*} and Youwei Du^a

a) Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, China.

b) College of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, 210017, China.

* Corresponding author, E-mail: <u>wzhong@nju.edu.cn</u>

Figure S1. The effect of different counter electrodes on polarization curves of the Co_9S_8 / MoS_x hybrid: red curve represents a Pt wire as counter electrode, and blue curve represents a graphite rod as counter electrode.

From the effect of different counter electrodes on polarization curves (Figure S1) of Co_9S_8 / MoS_{*x*} hybrid, it could be observed that the results did not show any obvious difference.

Figure S2. (a) XPS survey spectrum, (b) XP spectrum of Mo 3d-S 2s, and (c) S 2p of the pristine

Figure S3. FE-SEM figure of Co_9S_8 / MoS_x -1:2 hybrid.

Figure S4. Current-voltage characteristic of $\text{Co}_9\text{S}_8 / \text{MoS}_x$ -2:1 and $\text{Co}_9\text{S}_8 / \text{MoS}_x$ -1:2 at room temperature. Inset is the enlargement of current-voltage characteristic for $\text{Co}_9\text{S}_8 / \text{MoS}_x$ -2:1. **Table S1.** Comparison of resistance R (Ω), parameters measured, resistivity ρ values for the $\text{Co}_9\text{S}_8 / \text{MoS}_x$ -2:1 and $\text{Co}_9\text{S}_8 / \text{MoS}_x$ -1:2.

sample	resistance R (Ω)	length L(cm)	cross-sectional area	resistivity ρ (Ω.cm)
			S (cm ²)	
$Co_9S_8 / MoS_x - 2:1$	1.2	0.3	1.5×10 ⁻²	0.06
Co ₉ S ₈ / MoS _x -1:2	41.9	0.3	1.5×10 ⁻²	2.10

In this case, we adopt the conventional four-point probe technique in the room temperature to measure electrical resistivity of the samples. Firstly, the powder samples were compressed into rectangular bulks with $(10 \times 10 \times 0.15 \text{ mm}^3)$. The electrical measurements were conducted using a 4-point test fixture (copper contact wires with a distance of 6 mm between the source electrodes and 3 mm between the measuring electrodes). I-V characteristics were measured by an electrometer Keithley 6220 (as a current source) and an electrometer Keithley 2182A (detecting voltage).

Figure S5. Cyclic voltammograms of the pristine $MoS_x(a)$, physical mixture (Co_9S_8 -MoS_x) (b), and Co_9S_8 nanotubes (c).

Figure S6. Nyquist plots of the pristine $MoS_x(a)$, and Co_9S_8 nanotubes (b), respectively.

Table S2. Comparison of charge transfer resistance (R_{ct}) values for the pristine MoS_x , Co_9S_8 nanotubes, and Co_9S_8 / MoS_x hybrid.

Sample	η=-100mV(Ω)	η=-150mV(Ω)	η=-200mV(Ω)
MoS_x	7017	2964	971
Co ₉ S ₈	4439	424.3	79.2
Co_9S_8 / MoS_x	474.7	216.2	69.5

Figure S7. Time dependent potential of Co_9S_8 / MoS_x under a current density of 10 mA cm⁻².

Figure S8. The durability test for the pristine $MoS_x(a)$, Co_9S_8 - $MoS_x(b)$, Co_9S_8 nanotubes (c), Co_9S_8 / MoS_x -3:1 (d), Co_9S_8 / MoS_x -1:1 (e), and Co_9S_8 / MoS_x -1:2 (f).