Supporting Information for

A Super-Strong Hydrophobic Coating by Conducting A New 3D Hierarchical Architecture

Yong Seok Kim, Mingwei Shang, Shuai Kang, Jacob John Karsseboom, and Junjie Niu*

Supporting Information

Figures S1-2

Table S1

Movies S1-3

Figure S1. (a) SEM image of the original ACs. (b) The C and F elemental mappings of *f*-ACs using EDX.

Figure S2. (a) FTIR spectrum of the 3D hybrid composite. (b) 3D laser micro-confocal microscopy image of the hybrid composite self-cleaning coating with surface profile.

Table S1 Comparison of Hydrophobic Coatings.

Samples	Method	Contact angle	Mechanical Stability	Chemical/mechanical stability	Scalable or not	Transparency	Application	Reference
PTFE coated carbon nanotubes	Plasma enhanced chemical vapor deposition	170°	N/A	N/A	No	No	Fillers for nanocomposites and single strand conductors in molecular electronics	1
TiO ₂	Painting	168°	Sandpaper abrasion test (#240, 40 cycles)	N/A	Yes	No	Clothes, paper, glass, and steel for self-cleaning applications	2
Particle-filled silicone rubber composites	Drop casting	164.9°±2.2°	Sandpaper abrasion test (#400, 32.5kpa, 50cycles)	N/A	Yes	Semi- transparent	Self-cleaning	3
Nanoflower like gold	Chemical deposition	169°	Sandpaper abrasion test (#400, 30kpa, 2m)	pH=2,7 and 9	No	No	Anti-corrosion, self-cleaning, and mechanical durability	4
ZnO- polydimethylsiloxane	Chemical bath deposition	160°	Sandpaper abrasion test (45kpa, 300cycles); accelerate	CA kept 148°-168° when immersed in solution with pH from 1 to 13, for 24, 48 and 72h,	Yes	No	Self-cleaning and water oil separation	5
CuO	Electrodeposition and chemical oxidation	160°	CA≥150° after stored in air for 6 month	CA≥150° when pH from 1 to 10	Yes	Yes	Self-cleaning	6
Current work	Flexible with scalable methods	160-168°	Sandpaper abrasion test (26.1kpa, 50 cycles)	High CA at pH=2,7 and 9	Yes	Yes	Most of self-cleaning substrates such as metal, glass and plastic	

- **Movie S1.** Water droplet dances on the 3D composite coated glass.
- Movie S2. Water droplet rolls off on the AC hybrid composite coated glass with a tilt angle of 1°.
- Movie S3. Water droplet rolls off on the SiO₂ hybrid composite coated glass with a tilt angle of 1°.

Reference

- Lau, K. K.; Bico, J.; Teo, K. B.; Chhowalla, M.; Amaratunga, G. A.; Milne, W. I.; McKinley, G. H.; Gleason, K. K., Superhydrophobic carbon nanotube forests. *Nano letters* 2003, 3 (12), 1701-1705.
- 2. Lu, Y.; Sathasivam, S.; Song, J.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P., Robust self-cleaning surfaces that function when exposed to either air or oil. *Science* **2015**, 347 (6226), 1132-1135.
- 3. Tian, H.; Wang, F.; Ge, S.; Ou, J.; Li, W.; Yu, S., A simple and effective way to fabricate mechanical robust superhydrophobic surfaces. *RSC Advances* **2016**, 6 (34), 28563-28569.
- 4. Cui, S.; Lu, S.; Xu, W.; An, B.; Wu, B., Fabrication of robust gold superhydrophobic surface on iron substrate with properties of corrosion resistance, self-cleaning and mechanical durability. *Journal of Alloys and Compounds* **2017**, 728, 271-281.
- 5. Zhu, T.; Li, S.; Huang, J.; Mihailiasa, M.; Lai, Y., Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Materials & Design **2017**, 134, 342-351.
- 6. Li, H.; Yu, S., A robust superhydrophobic surface and origins of its self-cleaning properties. *Applied Surface Science* **2017**, 420, 336-345.