Supporting Information

Solvent-Minimized, Chromatography-Free, Diastereoselective Synthesis of Oxazolidine-Dispirooxindoles *via oxa*-1, 3-Dipolar Cycloaddition of 3-Oxindole

Peng-Ju Xia, [†] Jun Li, [†] Yu-Lun Qian, [†] Qing-Lan Zhao, [†] Hao-Yue Xiang,*

[†] Jun-An Xiao, [‡] Xiao-Qing Chen*[†] and Hua Yang*[†]

[†] College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.

R. China

[‡] College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, Guangxi, P. R. China

e-mail: xianghaoyue@csu.edu.cn; xqchen@csu.edu.cn; hyangchem@csu.edu.cn

Lists of Contents

1.	Studies on stability of product	S 2
2.	NMR spectra of 3a-3g , 4a-4m	\$22
3.	X-ray crystallographic data of compound 4d	\$23

1. Studies on stability of product

Figure S1 NMR spectra of (a) initial mixture of **1a** and **2a**; (b) reaction mixture purified through silica gel pad; (c) reaction mixture washed with water.

In order to better understand the inherent features of cycloadduct **3a**, different purification modes of **3a** were carried out and the results are presented in Figure S1. Once the reaction was complete, the reaction mixture was purified through a short silica gel pad. It was found that the resulting cycloadduct **3a** partially decomposed to give starting material **1a** (Fig, S1b), suggesting that **3a** is sensitive to acidic condition. On the other hand, the reaction mixture was subjected to washing with water, affording pure **3a** in excellent yield (Fig. S1c). Moreover, NMR spectrum of pure **3a** is still clean after being saved in air as solid for several days, suggesting that **3a** is quite stable as solid state.

2. NMR spectra of compound 3a-3g, 4a-4m

$\begin{array}{c} & -176.65 \\ & -175.06 \\ & -175.06 \\ & -175.06 \\ & -175.06 \\ & -175.78 \\ & -177.78 \\ & -133.01 \\ & -133.01 \\ & -137.78 \\ & -133.01 \\ & -137.78 \\ & -133.01 \\ & -137.78 \\ & -133.01 \\ & -137.78 \\ & -133.01 \\ & -133.01 \\ & -65.34 \\ & -65.3$

3. X-ray crystallographic data of compound 4d

X-Ray crystallographic analysis of dispirooxindole-piperazine **4d** (CCDC 1568850) showing the thermal ellipsoids at 30% probability level.

Bond precision	: C-C = 0.0059 A	Wavelength=0.71073			
Cell:	a=9.4793(2)	b=12.6384(3)	c=13.2202(4)		
	alpha=98.616(2)	beta=92.833(2)	gamma=107.212(1)		
Temperature:	293 К				
	Calculated	Report	ed		
Volume	1488.43(7)	1488.43(7)			
Space group	P -1	P-1			
Hall group	-P 1	?			
Moiety formula	C34 H31 N3 O3	?	?		
Sum formula	C34 H31 N3 O3	C34 H3	C34 H31 N3 O3		
Mr	529.62	529.62			
Dx,g cm-3	1.182	1.182			
Z	2	2			
Mu (mm-1)	0.076	0.076			
F000	560.0	560.0			
F000'	560.23				
h,k,lmax	11,15,15	11,15,15			
Nref	5253	5224			
Tmin,Tmax	0.982,0.985				
Tmin'	0.977				
Correction met	hod= Not given				
Data completen	ess= 0.994	Theta(max) = 25.030			
R(reflections)	• 0.0813(3917)	wR2(reflections) = 0.2718(5224)			
S = 1.063 Npar= 363					