Supporting Information

Composition-Dependent Aspect Ratio and Photoconductivity of Ternary (Bi_xSb_{1-x})₂S₃ Nanorods

Junli Wang, * Hongsong Yu, Tingting Wang, Yajie Qiao, Ying Feng, Kangmin Chen

School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R.

China

*Email: wangjl@ujs.edu.cn

Figure S1. The enlarged XRD patterns within the 2 θ window of 20-30° for the $(Bi_xSb_{1-x})_2S_3$ samples prepared at different Bi/Sb precursor ratios as marked in the figure.

Figure S2. Additional TEM images recorded on $(Bi_xSb_{1-x})_2S_3$ nanorods prepared at different Bi/Sb precursor ratios: 7:1, 4:1, 3:2, 2:3, 1:4 and 1:7 from top to bottom.

Figure S3. UV-visible absorption spectra of ternary $(Bi_xSb_{1-x})_2S_3$ nanorods prepared at different precursor ratios of Bi/Sb.

Figure S4. XRD patterns of unpassivated and thiol-passivated $(Bi_xSb_{1-x})_2S_3$ nanorods prepared at the Bi/Sb ratio of 4:1 (top) and 1:4 (bottom), respectively.

Figure S5. TEM images of thiol-passivated $(Bi_xSb_{1-x})_2S_3$ nanorods prepared at the Bi/Sb ratio of 4:1 (top) and 1:4 (bottom), respectively.