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Section 1. Use multiple methods to calculate the weight parameters in IaMD for Alanine Dipeptide. 

The weight parameters {��} can be determined by an iterative procedure (histogram flattening approach): 
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Here l denote the index of update round. After we iterated 20 rounds (and 500 ps each round) using this method, 

the parameters still have small fluctuations (Figure S2A). In order to promote convergence, the weighted 

histogram analysis method (WHAM) was introduced after iterating 12 rounds using the histogram flattening 

method. 1 With the use of preceding all samples, the optimal canonical probability � (�) can be estimated by 

iteratively solving the WHAM equations: 
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Here C is a normalization constant that meets the condition ∑ � (�)� = 1.0. Then, the weight parameters for 

next round can be obtained by 
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As shown in Figure S2B, the use of WHAM algorithm can significantly improve the convergence of iteration. 

However, regardless of the convergence, the difference between the weight parameters obtained by the above 

two methods are very small and are consistent with those obtained by the method of Lu using intersection points. 

(Figure S2C) The parameters are listed in columns of IaMD-A7iter and IaMD-A7wham in Table S3.  

In the original work of Lu2, the weight parameters were obtained using the midpoint of potential canonical 

averages. However, in our work, the midpoint of potential canonical averages is replaced by the intersection point 

of potential distributions. There is a slight difference between the weight parameters calculated by these two 

schemes. (Figure S2C and the columns of IaMD-A7mean in Table S3) Even so, it does not significantly affect the 

accuracy and efficiency of the IaMD simulation. In fact, the roughness of the free energy profiles calculated using 

parameters that are determined by different methods is comparable. (Figure S8B, S8C, and S8D) The accessible 

�-� spaces in 300 ns IaMD simulations with parameters IaMD-A7iter, IaMD-A7wham, and IaMD-A7mean are 95.3 %, 

95.3 % and 96.5 % respectively, are similar to that of IaMD-A7 (96.0 %). 

Section 2. Parameter determination procedure 

(1) Run a short cMD simulation, find the lowest potential energy ���� and average potential energy �����, set 

the value �� in IaMD parameters to less than ����, calculate �� of other subterms based on ����� and 

empirical rules. 

(2) Perform a few short aMD simulations with small α values, find the α� according to the location of energy 

distribution peaks. 

(3) Obtain ∆��,��� through the following equation: 

∆��,��� =
(�� −  ����)

�

�� + �� −  ����
 

(4) Insert N-2 points at equal intervals between 0 and ∆��,��� as the value of ∆��,���,∆��,���,…,∆����,��� 

respectively. 

(5) Calculate the values of α�,α�,…,α��� through the following equation: 

�� =
(�� −  ����)

�

∆��,���
− �� +  ���� 
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α� can be set to an arbitrary non-zero number. 

(6) Run a series of short aMD simulations with parameters (α�,��),(α�,��),…,(α�,��) respectively. Check 

the overlap of energy distributions in these simulations. If necessary, change the number of N and repeat 

steps (4), (5) and (6). 

(7) Check if the energy distribution peaks of these aMD simulations are arranged evenly, if yes, go to step (8), 

otherwise, use interpolation algorithm to get new {�′�,�′�,…,�′�}: 

 Define V�
�

 is the position of potential distribution peak in aMD simulation with (E�,α�); 

 Consider α� as a function of V�
�

, and use the cubic spline curves to describe this function; 

 Find a set of V�
�

 which are equidistant and spanning the range from V�
�

 to V�
�

; 

 Calculate the new α� value at V�
�

 using cubic spline interpolation algorithm. 

Then, repeat steps (6) and (7). 

(8) Base on the following equation,  

���� = �� +
��� − ��,���

� �
�

�� + �� − ��,���
� −

����� − ��,���
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�
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calculate the value of ��,��,…,��  recursively. ��  is always equal to 0.0. ��,���
�  is the intersection 

position of two energy distribution curves from aMD simulations with (��, ��) and (��, ����). It can also be 

replaced by the midpoint of the adjacent two distribution potential peaks. 

 

If use the midpoint of potential canonical averages to replace the intersection point of potential distributions. 

There is an added benefit of simplifying the parameter determination process. After performing a series of short 

aMD simulations in step (6) of above parameter determination procedure, the relationship of {��} and potential 

canonical averages ������,�� can be determined by interpolation algorithm or curve fitting algorithm.  

According to the width of the obtained potential energy distribution from aMD simulations, one can choose a new 

set of equidistant ������,��, and get a new set of {��} through the determined relationship. This avoids the 

possible repeating of steps (4), (5) and (6) to get the well overlap of energy distributions and steps (6) and (7) to 

keep the energy distributions arranged evenly. 

Section 3. Simulation details 

All simulations are performed using OpenMM3-4 on GPUs with mixed precision. We use amber99sb5 force field for 
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Alanine Dipeptide, Chignolin, and Trp-cage and amber036 force field for Villin Headpiece simulations. 

The Alanine Dipeptide was solvated into a cubic box with 630 TIP3P7 water molecules.  The total number of 

atoms is 1912. The system was initially equilibrated in NVT ensemble for 500 ps and NPT ensemble for 2 ns. After 

that, the aMD, IaMD, and cMD run with NVT ensemble with 300 K. For Chignolin, Trp-cage, and Villin Headpiece, 

the initial structures were obtained from the PDB code 1UAO,8 2JOF, and1YRF.9 To get the unfolded structures of 

Chignolin, Trp-cage, and Villin Headpiece, we first performed 500 ns simulations at 400 K, 500 K, and 500 K 

respectively. In these simulations, water box extends 12 Å from the solute surface. 0.05 M NaCl was used to 

balance the charges of the Chignolin and Villin Headpiece system to neutral. The total number of atoms is 7053 for 

Chignolin, 11468 for Trp-cage and 27144 for Villin Headpiece. Then, the selected frame with the unfolded 

structure of the three fast-folding proteins is used as the start state for 1ns NVT equilibrium followed by 5 ns NPT 

equilibrium. Consistent with the Alanine Dipeptide system, simulations with aMD or IaMD for these fast-folding 

proteins were performed under the NVT ensemble with 300 K. 

The Andersen Thermostat10 was applied to couple all system’s temperature with a collision frequency of 1.0 ps−1.  

In constant pressure simulations, Monte Carlo Barostat was used to keep the pressure to1.0 bar with a trial 

frequency to change the box every 50 MD steps. To estimate the contribution of long-range non-bonded 

interactions that beyond the cutoff of 8.0 Å, the Particle-Mesh Ewald (PME)11 and the dispersion correction 

algorithm12 were exploited for electrostatic and van der Waals terms respectively. For all simulations, the Settle 

Algorithm13-14 was applied to keep TIP3P water rigid. All hydrogen bond lengths of protein were fixed using CCMA 

algorithm.15 Mass of hydrogen in protein (and in water molecules of Alanine Dipeptide simulations) was increased 

to 4 amu. The added mass is subtracted from the bonded heavy atom. Hence the integration step size of all 

simulations was set to 4 fs.16 In the three folding cases, to increase the diffusion motions of waters around protein 

molecule, we reduce the mass of water oxygen atom to 2 amu and keep water hydrogen atom mass as 1amu. The 

change does not affect the thermodynamic equilibrium properties.17-18 

Section 4. The impact of acceleration parameters and data collection frequency on accuracy  

We choose another pair of protocols, aMD-A3 and IaMD-A3, to analyze the topic of this section. The standard 

deviations of aMD-A3 (with 83.5% coverage) and IaMD-A3 (with 88.7% coverage) are the smallest in all aMD and 

IaMD protocols respectively.  

The number of effective sampling points along ϕ−ψ space (denoted as ��(�,�)) in single 300ns aMD-A3 and 
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IaMD-A3 simulation were shown in Figure S5A and S5B respectively. The �� in aMD-A3 is about one order of 

magnitude smaller than that in IaMD-A3 at same locations. At the bin of β, �� are about 2445 and 44175 and the 

ratio of ��to the sampling number �� are about 1.2% and 22% for aMD-A3 and IaMD-A3 respectively. Even 

though the difference with �� of IaMD is huge, �� of aMD is large enough to accurately calculate the statistical 

average, especially at the locations of the minimum.  

As shown in Figure S5C and S5D, the ∆����(�,�) of aMD-A3 changes significantly with the coordinate � or � 

change. However, the free energy of IaMD is mainly affected by ��(�,�) due to the fact that the ∆����(�,�) 

variation of IaMD-A3 within the range of 0.5 kcal/mol at most of the low free energy regions. Hence, the shape of 

the effective point distribution along ϕ and ψ is very similar to the free energy profiles and global or local 

maximums of effective point distribution profiles correspond exactly to the minimums of FEPs. It is beneficial to 

the sampling efficiency or statistics accuracy of important states which usually have low free energy.  

2-D dihedral ϕ-ψ FEPs generated from single 300ns aMD-A3 (Figure S7A) or IaMD-A3 (Figure S7C) simulation are 

consistent with the result of 5us cMD (Figure S6A) or previous simulation results.19  

The contour lines in two FEPs are smooth. It indicates that none of them suffered from the big statistical noises in 

reweighting. Relative to aMD-A3, the sampling efficiency of aMD-A6 was significantly improved, but the contour 

lines of FEPs from aMD-A6 (Figure S7B) were significantly rough. However, the smoothness of FEPs from IaMD-A7 

(Figure S7D) was almost no difference with IaMD-A3.  

The FEPs in Figure S7 are generated using the data collected every 0.012 ps in the simulation. Writing data too 

frequently may significantly affect the computational efficiency, especially on GPU platform. The FEPs in Figure 2A 

and 2B are calculated from the simulation with 0.1 ps data collection interval. Compare the FEP in Figure S7B, the 

contour lines of FEP in Figure 2A become very rough and discontinuous. The smoothness of new profile of 

IaMD-A7 with 0.1 ps (Figure 2B) becomes slightly rougher than that in Figure S7D but still better than that the 

result of aMD-A6 with 0.012 ps collection interval (Figure S7B). Thanks to sufficient effective sampling points, we 

do not need to save data with high-frequency in IaMD.  
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Table S1. The aMD parameters for Alanine Dipeptide. 

name α(kcal/mol) E(kcal/mol) 

aMD-A1 100.00 40.63 

aMD-A2 60.00 40.63 

aMD-A3 30.00 40.63 

aMD-A4 20.00 40.63 

aMD-A5 10.00 40.63 

aMD-A6 5.00 40.63 

aMD-A7 3.00 40.63 

 

 

Table S2. The parameters of IaMD for Alanine Dipeptide. (The units are kcal/mol) 

IaMD-A1 IaMD-A2 IaMD-A3 IaMD-A4 

a E M a E M a E M a E M 

99.72 2.39 0.00 84.14 2.39 0.00 68.98 2.39 0.00 64.11 2.39 0.00 

99.72 40.63 -6.31 84.14 40.63 -7.13 68.98 40.63 -8.16 64.11 40.63 -8.57 

43.40 40.63 -10.82 36.86 40.63 -11.79 31.28 40.63 -12.77 29.60 40.63 -13.12 

28.69 40.63 -13.30 25.17 40.63 -14.05 21.79 40.63 -14.87 20.64 40.63 -15.19 

22.27 40.63 -14.77 19.42 40.63 -15.49 16.40 40.63 -16.38 15.34 40.63 -16.74 

18.02 40.63 -15.92 15.34 40.63 -16.71 12.47 40.63 -17.66 11.48 40.63 -18.05 

14.72 40.63 -16.94 12.16 40.63 -17.78 9.50 40.63 -18.76 8.59 40.63 -19.15 

12.05 40.63 -17.84 9.64 40.63 -18.71 7.23 40.63 -19.67 6.44 40.63 -20.04 

         4.82 40.63 -20.76 

IaMD-A5 IaMD-A6 IaMD-A7 

a E M a E M a E M 

47.26 2.39 0.00 47.26 0.24 0.00 48.00 2.39 0.00 

47.26 40.63 -10.29 47.26 40.63 -10.29 48.00 40.63 -10.23 

23.74 40.63 -14.38 23.74 40.63 -14.38 24.02 40.63 -14.34 

16.03 40.63 -16.47 16.03 40.63 -16.47 16.26 40.63 -16.43 

11.05 40.63 -18.18 11.05 40.63 -18.18 11.26 40.63 -18.12 

7.62 40.63 -19.55 7.62 40.63 -19.55 7.81 40.63 -19.47 

5.26 40.63 -20.57 5.26 40.63 -20.57 5.42 40.63 -20.50 

3.63 40.63 -21.36 3.63 40.63 -21.36 3.76 40.63 -21.28 

   2.51 40.63 -21.87 2.61 40.63 -21.86 

   1.73 40.63 -22.27 1.81 40.63 -22.28 

   1.19 40.63 -22.54 1.25 40.63 -22.55 

      0.87 40.63 -22.76 

      0.60 40.63 -23.01 
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Table S3. The parameters obtained from different methods for Alanine Dipeptide. (The units are kcal/mol) 

IaMD-A7iter IaMD-A7wham IaMD-A7m 

a E M a E M a E M 

48.00 2.39 0.00  48.00 2.39 0.00  48.00 2.39 0.00  

48.00 40.63 -10.23  48.00 40.63 -10.20  48.00 40.63 -9.77  

24.02 40.63 -14.34  24.02 40.63 -14.28  24.02 40.63 -13.84  

16.26 40.63 -16.45  16.26 40.63 -16.38  16.26 40.63 -15.95  

11.26 40.63 -18.14  11.26 40.63 -18.06  11.26 40.63 -17.65  

7.81 40.63 -19.49  7.81 40.63 -19.40  7.81 40.63 -19.04  

5.42 40.63 -20.53  5.42 40.63 -20.43  5.42 40.63 -20.13  

3.76 40.63 -21.31  3.76 40.63 -21.20  3.76 40.63 -20.97  

2.61 40.63 -21.89  2.61 40.63 -21.78  2.61 40.63 -21.61  

1.81 40.63 -22.32  1.81 40.63 -22.21  1.81 40.63 -22.09  

1.25 40.63 -22.63  1.25 40.63 -22.53  1.25 40.63 -22.46  

0.87 40.63 -22.87  0.87 40.63 -22.76  0.87 40.63 -22.74  

0.60 40.63 -23.04  0.60 40.63 -22.94  0.60 40.63 -22.95  

 

 

Table S4. The parameters of ITS for Alanine Dipeptide. T refers to the temperature in Kelvin temperature. The unit 

of M is kcal/mol. 

ITS-A1 ITS-A2 ITS-A3 ITS-A4 ITS-A5 

T M T M T M T M T M 

300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00 

656.91 6.83 656.91 6.83 656.91 6.83 656.91 6.83 656.91 6.83 

1244.18 10.00 1244.18 10.00 1244.18 10.00 1244.18 10.00 1244.18 10.00 

  1869.95 11.44 1869.95 11.44 1869.95 11.44 1869.95 11.44 

    2084.76 11.79 2084.76 11.79 2084.76 11.79 

      2231.11 12.00 2231.11 12.00 

        2353.31 12.17 

 

Table S5. The parameters of aMD for Chignolin, Trp-cage and Villin Headpiece. (The unit is kcal/mol) 

name α(kcal/mol) E(kcal/mol) 

aMD-C1 7.17 98.95 

aMD-C2 7.17 122.85 

aMD-C3 7.17 146.75 

aMD-T1 14.34 227.06 

aMD-T2 14.34 274.86 

aMD-T3 14.34 322.66 

aMD-V 32.74 547.32 
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Table S6. The parameters of IaMD for Chignolin, Trp-cage and Villin Headpiece. (The unit is kcal/mol) 

IaMD-C1 IaMD-C2 IaMD-C3 

α E M α E M α E M 

2000.00 0.00 0.00 2000.00 0.00 0.00 2000.00 0.00 0.00 

447.24 122.85 -2.49 1092.02 146.75 -3.01 1384.32 170.65 -4.59 

255.18 122.85 -3.84 507.65 146.75 -5.84 641.49 170.65 -9.00 

142.82 122.85 -5.67 312.86 146.75 -8.51 393.88 170.65 -13.21 

92.53 122.85 -7.20 215.46 146.75 -10.99 270.08 170.65 -17.19 

65.21 122.85 -8.44 157.03 146.75 -13.33 195.79 170.65 -20.98 

45.79 122.85 -9.65 118.07 146.75 -15.53 146.27 170.65 -24.66 

30.99 122.85 -10.82 90.24 146.75 -17.63 110.90 170.65 -28.23 

20.11 122.85 -11.86 69.37 146.75 -19.61 84.37 170.65 -31.67 

11.70 122.85 -12.91 53.14 146.75 -21.46 63.73 170.65 -34.90 

2.39 122.85 -13.76 40.15 146.75 -23.21 47.23 170.65 -38.08 

   29.53 146.75 -24.90 33.72 170.65 -41.09 

   20.67 146.75 -26.52 22.47 170.65 -43.94 

   13.18 146.75 -28.12 12.94 170.65 -46.84 

   4.78 146.75 -30.27 4.78 170.65 -49.79 

IaMD-T1 IaMD-T2 IaMD-T3 IaMD-V 

α E M α E M α E M α E M 

822.18 35.85 0.00 1477.06 35.85 0.00 2344.65 35.85 0.00 2919.46 57.36 0.00 

822.18 274.86 -3.94 1477.06 322.66 -7.07 2344.65 370.46 -9.48 2919.46 607.08 -17.03 

365.08 274.86 -7.23 668.62 322.66 -13.41 1078.51 370.46 -18.23 1322.30 607.08 -32.37 

212.71 274.86 -10.03 399.14 322.66 -19.26 656.47 370.46 -26.45 789.91 607.08 -46.22 

136.53 274.86 -12.51 264.40 322.66 -24.63 445.45 370.46 -34.30 523.72 607.08 -58.75 

90.82 274.86 -14.68 183.56 322.66 -29.56 318.83 370.46 -41.74 364.01 607.08 -70.42 

60.35 274.86 -16.60 129.66 322.66 -34.10 234.43 370.46 -48.79 257.53 607.08 -81.14 

38.58 274.86 -18.33 91.16 322.66 -38.31 174.13 370.46 -55.43 181.47 607.08 -90.88 

22.26 274.86 -19.97 62.29 322.66 -42.28 128.91 370.46 -61.76 124.43 607.08 -99.90 

9.56 274.86 -21.57 39.83 322.66 -46.02 93.74 370.46 -67.78 80.07 607.08 -108.36 

   21.87 322.66 -49.72 65.61 370.46 -73.47 44.57 607.08 -116.21 

   7.17 322.66 -53.24 42.59 370.46 -78.92 15.54 607.08 -123.77 

      23.40 370.46 -84.08    

      7.17 370.46 -89.13    

 



 

Figure S1. Demonstration of Parameters determin

(bottom) 
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Parameters determining procedure for Alanine Dipeptide (top) and Chignolin 

 

ipeptide (top) and Chignolin 



 

Figure S2. Convergence and comparison of 

of weight parameters using the histogram flattening

Approaches (12 rounds histogram flattening

{��} obtained from different methods.

 

Figure S3. The relationship between torsional 
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and comparison of the weight parameters {��} (that is− ���ln(

histogram flattening; (B) the convergence of weight parameters

histogram flattening + 8 rounds WHAM); (C) the comparison of 

different methods. 

torsional potential energy and boost potential of aMD6 and IaMD7.

 

(��)). (A) the convergence 

weight parameters using the hybrid 

comparison of the weight parameters 

 

of aMD6 and IaMD7. 



 

 

Figure S4. Free energy profiles of Alanine Dipeptide. (A) the result 

from single IaMD-A7 simulation. The FEPs are calculated from 300 ns simulations with 

every 1.5 kcal/mol. All ϕ−ψ plots are sorted in a bin size of 

 

 

Figure S5. The number of effective sampling points

a function of ϕ and ψ and the maximum 
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Alanine Dipeptide. (A) the result obtained from single aMD-A6 simulation; (B) th

he FEPs are calculated from 300 ns simulations with data collected every 0.

sorted in a bin size of 7.2°×7.2°. 

sampling points in single 300 ns simulation with (A) aMD

maximum boost potential in (C) aMD-A3 or (D) IaMD-A3 simulation 

 

A6 simulation; (B) the result obtained 

data collected every 0.1 ps. Contour lines are 

 

in single 300 ns simulation with (A) aMD-A3 or (B) IaMD-A3 as 

simulation as a function of 



 

ϕ and ψ. Color bar of (A) and (B) represents the order of magnitude of the 

unit for the color bar of (C) and (D) is kcal/mol

 

Figure S6. Results of cMD simulation for 

the coverage over φ-ψ space in cMD (top) and IaMD

Figure S7. Free energy profiles of Alanine 

aMD-A3 with data collected every 0.01

with data collected every 0.1 ps; (D) IaMD
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represents the order of magnitude of the effective sampling point

is kcal/mol. All ϕ−ψ plots are sorted in a bin size of 7.2

simulation for Alanine Dipeptide. (A) free energy profiles from 5 

in cMD (top) and IaMD-A7 (bottom) as a function of simulatio

Alanine Dipeptide obtained from aMD (top panel) and 

with data collected every 0.012 ps; (B) aMD-A6 with data collected every 0.012 p

IaMD-A3 with data collected every 0.012 ps. All simulation length 

sampling point numbers. The 

7.2°×7.2°. 

 
energy profiles from 5 μs cMD simulation; (B) 

simulation time. 

 

obtained from aMD (top panel) and IaMD (lower panel). (A) 

ps; (C) aMD-A6 simulation 

ll simulation length is 300ns. To 



 

give a clear distinction of free energy for the low

color is 0 to 7.2 kcal/mol and the regions with free energy greater than 7.2 kcal/mol are represented as red.

These ϕ−ψ plots are sorted in a bin size of 

 

Figure S8. The free energy profiles of single 300 ns simulations with ITS

�� determined using the midpoint of the adjacent two 

separate aMD subterms (right). To give a clear distinction of free energy for the low

free energy represented by different color is 0 to 7.2 kcal/mol and the regions with free energy greater than 7.2 

kcal/mol are represented as red. These

kcal/mol. 
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free energy for the low-energy regions, the range of free energy represented by different 

color is 0 to 7.2 kcal/mol and the regions with free energy greater than 7.2 kcal/mol are represented as red.

in a bin size of 7.2°×7.2°. Contour lines are every 0.36 kcal/mol.

he free energy profiles of single 300 ns simulations with ITS-A8 (left) or IaMD

midpoint of the adjacent two torsional potential distribution 

To give a clear distinction of free energy for the low-energy regions, the range of 

free energy represented by different color is 0 to 7.2 kcal/mol and the regions with free energy greater than 7.2 

These ϕ−ψ plots are sorted in a bin size of 7.2°×7.2°. Contour lines are every 

energy regions, the range of free energy represented by different 

color is 0 to 7.2 kcal/mol and the regions with free energy greater than 7.2 kcal/mol are represented as red. 

kcal/mol. 

 

(left) or IaMD-A7m whose parameters 

potential distribution peaks of simulations with 

energy regions, the range of 

free energy represented by different color is 0 to 7.2 kcal/mol and the regions with free energy greater than 7.2 

Contour lines are every 0.36 



 

Figure S9. The distributions of torsional 

simulations with aMD or IaMD for Chignolin, 
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torsional potential energies (left column) and boost potential

simulations with aMD or IaMD for Chignolin, Trp-cage, and Villin respectively. 

 
potentials (right column) in the 



 

Figure S10. The number of effective sampling points

aMD or IaMD for Chignolin, Trp-cage

order of magnitude of the effective sampling point

Figure S11. The maximum boost potential

Headpiece, as a function of ϕ and ψ. The unit 

 

SI-15/21 

sampling points in every 1000 thousand sampling points

cage, and Villin Headpiece, as a function of ϕ and ψ. 

sampling point numbers. 

boost potential of simulations with aMD or IaMD for Chignolin, 

The unit for color bars is kcal/mol.  

 

sampling points of simulations with 

. Color bar represents the 

 

of simulations with aMD or IaMD for Chignolin, Trp-cage, and Villin 



 

Figure S12. The result of cMD simulations

function of simulation time. The protein folds into 

state in other trajectories (green line).

lines. 

Figure S13. The results of simulations with aMD

profile of aMD-C1 (in kcal/mol); (B) 2D free energy profile of

simulations with aMD-C1 as a function of simulation length

function of simulation length. The free energy profile 
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simulations for Chignolin. (A) The RMSD of ten 2 μs simulations with cMD

The protein folds into the native in five trajectories (red line)

. (B) 2D free energy profile obtained from the trajectories

he results of simulations with aMD-C1 and aMD-C3 for the folding of Chignolin.

) 2D free energy profile of aMD-C3 (in kcal/mol)

as a function of simulation length; (D) RMSD of five 1 μs simulations with 

he free energy profile obtained from total 5 μs simulations for each protocol.

 
simulations with cMD as a 

(red line) and folds into another 

trajectories represents the red 

 
C3 for the folding of Chignolin. (A)  2D free energy 
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