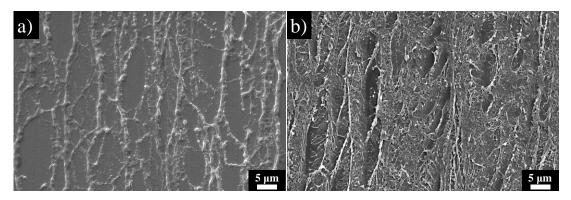
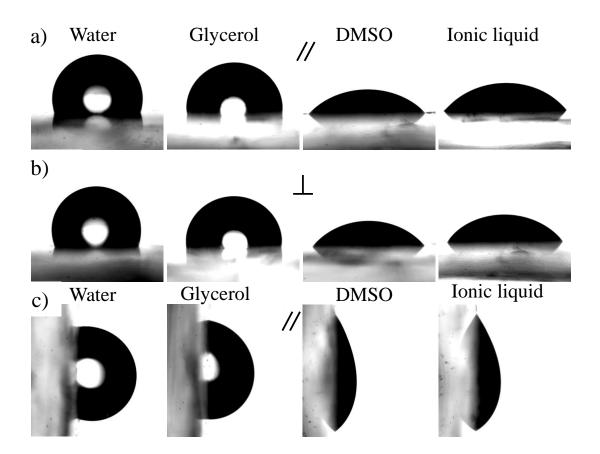
Supporting Information

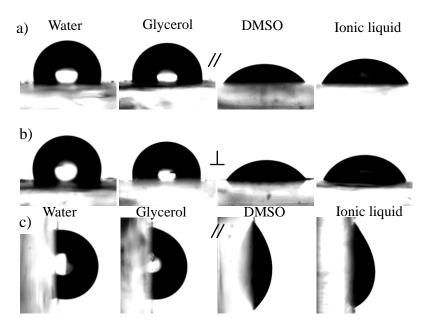
Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the

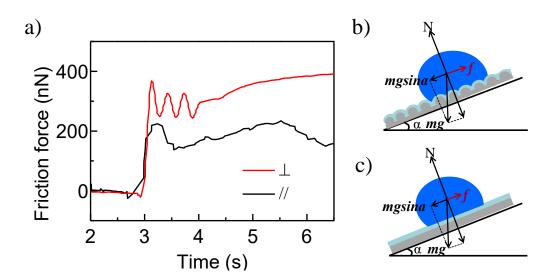

Droplet Motion

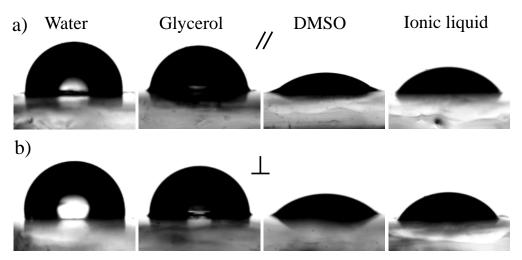
Lili Wang, Liping Heng* and Lei Jiang


Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing 100191, China.

Tel: (+86) 10-82621396; Fax: (+86) 10-8262 7566


E-mail: henglp@iccas.ac.cn


Figure S1. SEM images of PS films prepared by directional freeze-dying, using different concentrations of PS solutions: (a) 1 mg mL⁻¹ and (b) 3 mg mL⁻¹.


Figure S2. Anisotropic CA photographs of various liquid droplets (2 $\mu\mu$ L) on the directional porous PS films without paraffin: (a) parallel to the fiber direction (//) and (b) perpendicular to the fiber direction (\perp). (c) Various liquid droplets (2 μ L) on the directional porous PS films without paraffin did not slide even when the surfaces were tilted 90° in the parallel direction (//).

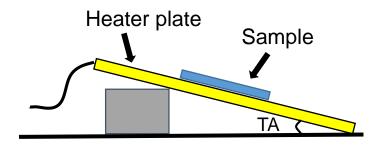

Figure S3. Anisotropic CA photographs of various liquid droplets (2 μ L) on the directional porous PS films coated with paraffin at 25 °C ($T < T_{\rm m}$): (a) parallel to the fiber direction (//) and (b) perpendicular to the fiber direction (\perp). (c) Various liquid droplets (2 μ L) on the directional porous PS films coated with paraffin at 25 °C ($T < T_{\rm m}$) did not slide even when the surfaces were tilted 90° in the parallel direction (//).

Figure S4. (a) Friction forces of the water drop in the perpendicular direction (\perp) and the parallel direction (//) at 55 °C. The forces loaded on the droplet in (b) the perpendicular direction and (c) the parallel direction. The resistance f in the perpendicular direction is larger than that in the parallel direction, resulting in the larger SA in the perpendicular direction.

Figure S5. Anisotropic CA photos of various liquid droplets (2 μ L) on the directional porous PS films coated with paraffin at 55 °°°C ($T > T_m$): (a) parallel to the fiber direction (//) and (b) perpendicular to the fiber direction (\perp).

Figure S6. Schematic side-view depiction of the sample (glass slide or glass tube) on the heater plate.

Table S1. Anisotropic CAs of various liquid droplets (2 μ L) on the porous PS films without paraffin.

Liquid type	CA //	СА ⊥	Surface tension (mN/m)	Viscosity coefficient (mPa·m)	
Water	$107.6 \pm 2.0^{\circ}$	$113.7 \pm 1.6^{\circ}$	72.1	0.89	
Glycerol	$97.3 \pm 1.2^{\circ}$	$99.9 \pm 0.9^{\circ}$	62.7	704.72	
DMSO	$47.2 \pm 1.0^{\circ}$	$51.2 \pm 1.1^{\circ}$	43.6	1.69	
Ionic liquid	51.6 ± 1.7°	56.2 ± 1.5°	32.8	55.40	

Table S2. Anisotropic CAs of various liquid droplets (2 μ L) on the porous PS films coated with paraffin at 25 °C.

Liquid type	CA //	СА ⊥
Water	$105.5 \pm 1.8^{\circ}$	110.2 ± 2.9°
Glycerol	$97.8 \pm 2.8^{\circ}$	$99.5 \pm 1.7^{\circ}$
DMSO	$51.6\pm1.5^{\circ}$	$54.7 \pm 2.0^{\circ}$
Ionic liquid	$63.7 \pm 1.7^{\circ}$	66.6 ± 1.9°

Table S3. CAs and surface tensions of various test liquids and liquid paraffin and the calculated ΔE in the parallel direction at 55 °C.

Liquid A	Liquid B	R	$\gamma_{\mathbf{A}}$	$\gamma_{ m B}$	γ_{AB}	$ heta_{ m A}$	θ_{B}	ΔE_1	ΔE_2
Water	Liquid paraffin	2.8	66.6	26.5	38.3	93.8°	20.3°	43.7	122.1
Glycerol	Liquid paraffin	2.8	59.2	26.5	32.4	91.2°	20.3°	40.7	105.8
DMSO	Liquid paraffin	2.8	35.9	26.5	6.1	76.1°	20.3°	37.3	56.1
Ionic liquid	Liquid paraffin	2.8	30.5	26.5	2.8	77.2°	20.3°	47.9	54.7

Table S4. The calculated ΔE in the perpendicular direction at 55 °C.

Liquid A	Liquid B	R	$\gamma_{ m A}$	γ_{B}	γ_{AB}	$ heta_{ m A}$	$ heta_{ ext{B}}$	ΔE_1	ΔE_2
Water	Liquid paraffin	3.7	66.6	26.5	38.3	93.8°	20.3°	70.1	148.5
Glycerol	Liquid paraffin	3.7	59.2	26.5	32.4	91.2°	20.3°	64.2	129.3
DMSO	Liquid paraffin	3.7	35.9	26.5	6.1	76.1°	20.3°	51.3	70.1
Ionic liquid	Liquid paraffin	3.7	30.5	26.5	2.8	77.2°	20.3°	64.2	71.0