Supporting Information

Artificial Metalloproteins Containing Co₄O₄ Cubane Active Sites

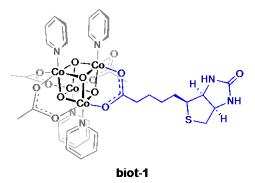
Lisa Olshansky,^{*a*} Raúl Huerta-Lavorie,^{*b*} Andy I. Nguyen,^{*b*} Jaicy Vallapurackal, ^{*a*} Ariel Furst, ^{*b*} T. Don Tilley,^{*b*,*} A. S. Borovik^{*a*,*}

^aDepartment of Chemistry, University of California, Irvine, California 92697, USA. ^bDepartment of Chemistry, University of California, Berkeley, California 94720, USA. tdtilley@berkeley.edu, aborovik@uci.edu

Index	Page
Materials	3
Synthetic methods	4
Molecular biology, protein expression and purification	8
Binding titration procedure	9
SWV Sample preparation and experimental procedures	10
XRD Sample preparation	11
XRD Data collection and processing	12
Table S1. Selected bond metrics	13
Table S2. Oxidation potentials of biot- β -Ala- 1 \subset 2xm-S ₁₁₂ X-Sav variants	14
Table S3. Midpoint potentials of biot-Z-1 complexes in the absence of Sav	15
Table S4. Normalized SWV peak current for biot- β -Ala- 1 \subset 2xm-S ₁₁₂ X-Sav va	riants16
Table S5. XRD data processing and refinement statistics	17
Figure S1. Binding titrations of biot-β-Ala- 1 with Sav variants	18
Figure S2. Electron density maps of biot- β -Ala- 1 ⊂ 2xm-Sav (PDB 6AUC)	19
Figure S3. Electron density maps of biot- β -Ala- 1 \subset 2xm-S ₁₁₂ Y-Sav (PDB 6AUE)	E)20
Figure S4. Absorption spectra of biot-β-Ala- 1 ⊂ 2xm-Sav over 48 h	22
Figure S5. CV data for biot-β-Ala-1 ⊂ 2xm-Sav at pH 7 over 48 h	21
Figure S6. CV data for biot-Z-1 complexes in the absence of Sav	23
Figure S7. SWV rinse test and flow-through control experiments	24
Figure S8. SWV data for biot- β -Ala- 1 \subset 2xm-S ₁₁₂ F-Sav	25

Figure S9. Crystal structure of biot-β-Ala-1 ⊂ 2xm- S ₁₁₂ F-Sav (PDB 6AUO)	26
Figure S10. SWV at pH 10 for biotin \subset 2xm-S ₁₁₂ Y-Sav	27
Figure S11. Crystal structure of biotin $\subset 2xm$ -S ₁₁₂ Y-Sav (PDB 6AUL)	28
Figure S12. XRD structure of biot-β-Ala-1 ⊂ 2xm-S ₁₁₂ Y-Sav (PDB 6AUH)	29
Figure S13. ¹ H- and ¹³ C-NMR spectra of biot-β-Ala- 1	30
Figure S14. ¹ H- and ¹³ C-NMR spectra of biot-1	31
Figure S15. ¹ H- and ¹³ C-NMR spectra of biot-gaba-1	32
Figure S16. ¹ H- and ¹³ C-NMR spectra of biot-py-1	33
Figure S17. ¹ H- and ¹³ C-NMR spectra of biot-histamine-1	34
Figure S18. ¹ H- and ¹³ C-NMR spectra of biot-histamine	35
References	36

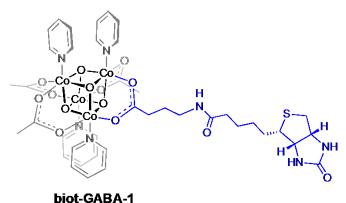
Materials. Distilled deionized water (ddH₂O) (18 MΩ cm⁻¹) was used for all aqueous solutions and other uses of water. All commercially available reagents were obtained of the highest purity and used as received. Biotin, iminobiotin agarose resin, and the codon optimized pET24a-Sav plasmid¹ were received as a generous gift from Professor Thomas R. Ward. Thin-layer chromatography (TLC) was performed on Whatman 250 µm layer 6 Å aluminum-backed silica gel plates or Analtech silica gel and alumina G 250 µm glass backed plates. Eluted plates were visualized using UV or visible light and/or p-DACA stain as indicated.² Column chromatography was performed with the indicated solvent system using Fisher reagent silica gel 60 (230-400 mesh) or basic alumina (60-325 mesh, Brockman Activity I). Q5 High-fidelity 2x master mix was purchased from NEB and primers, in purified form, were custom ordered from Invitrogen. Lysozyme from chicken egg white, lyophilized DNase I, and Sephadex G-25 medium-grain gel filtration resin were purchased from Sigma Aldrich.

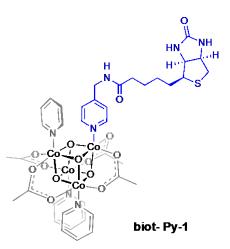

Preparation of biot-β-Ala-1. The synthesis of biot-β-Ala-1 was achieved through slight variations to published methods. Biotin pentafluorophenyl ester was prepared as previously described from the condensation of biotin and pentafluorophenyl trifluoroacetate.³ Biot-β-Ala was synthesized from the reaction of β-alanine with the activated biotin pentafluorophenyl ester in the presence of 1.2 eq. Et₃N and in a mixture of H₂O:DMF (1:6), with water included to aid in β-Ala solubility. Solvent was removed *en vacuo* and the dry crude product triturated with Et₂O. Filtration on a fine glass frit followed by washing with excess Et₂O provided the pure product. The synthesis⁴ and purification⁵ of Co₄O₄(OAc)₄(py)₄ (1) was carried out as previously described. Equilibrating 1 with biot-β-Ala in refluxing MeOH for 5 h afforded a mixture of monobiotinylated (biot-β-Ala-[Co₄O₄(OAc)₃(py)₄], hereafter referred to as biot-β-Ala-1) and doubly-biotinylated ((biot-β-Ala)₂-[Co₄O₄(OAc)₂(py)₄]) cubanes. The crude reaction mixture could be purified by two methods: a) Dry-loading the crude material onto silica gel and column chromatography provided the purified products using a solvent

mixture containing 3% Et₃N in acetone and a gradient of 2 to 10% MeOH (R_f with 5% MeOH = 0.36) followed by concentration under reduced pressure to yield the dark green solid in 36%; or b) wet-loading the crude material onto a chromatography column of silica gel with a mobile phase of CH₂Cl₂/MeOH (99:1) and a gradual increase of polarity up to 9:1 followed by further purification on basic alumina with a gradient of CH₂Cl₂/MeOH (99.9:0.1) up to 95:5 provided the purified material in 6.15% yield. ¹H NMR (600 MHz, Methanol- d_4 , 25 °C) δ 8.43 (d, J = 5.2 Hz, 8H, aryl-H), 7.68 (t, J = 6.5 Hz, 4H, aryl-H), 7.20 (t, J = 6.1 Hz, 8H, aryl-H), 4.48 (dd, J = 7.9, 5.0 Hz, 1H, -CH), 4.28 (dd, J = 7.8, 4.5 Hz, 1H, -CH), 3.46 (dt, J = 13.3, 6.4 Hz, 1H, -CH), 3.17 (ddt, J = 20.2, 9.8, 5.3 Hz, 1H, -CH₂), 2.91 (dt, J = 12.3, 6.0 Hz, 1H, -CH₂), 2.70 (dd, J = 12.8, 2.9 Hz, 1H, -CH₂), 2.57 $(t, J = 6.6 \text{ Hz}, 2H, -CH_2), 2.12 (s, 9H, -CH_3), 1.74 - 1.51 (m, 4H, -CH_2), 1.44 - 1.34 (m, 2H, 2H, 2H)$ -CH₂). ¹³C {¹H} (151 MHz, MeOD, 25 °C) δ 188.55, 188.52, 188.36, 188.34, 175.67, 166.09, 154.09, 154.06, 139.07, 139.05, 125.33, 125.30, 63.35, 61.64, 61.62, 56.94, 49.85, 49.57, 41.03, 39.98, 39.94, 37.02, 36.82, 29.82, 29.81, 29.48, 26.75, 26.72, 26.47, 26.40. Elem. anal. calcd for [C₃₉H₄₉Co₄N₇O₁₄S · 2.0 CH₂Cl₂ · MeOH]: C: 38.52, H: 4.39, N: 7.49, S: 2.45; found C: 38.87, H: 4.62, N: 7.87, S: 2.59. ESI-HRMS (MeOH) m/z calcd for C₃₉H₄₉Co₄N₇O₁₄S [M + H]+ 1108.0464, found 1108.0495; [M + Na]+ 1130.0284, found 1130.0279.

Preparation of additional biot-Z-1 complexes (Z = various linkers). Biot-gaba and biotpy were prepared analogously to the procedure described above. Biot-histamine was prepared by adding isobutyl chloroformate (0.098 mL, 0.740 mmol) to a solution of biotin (0.150g, 0.614 mmol) in DMF (10 mL) containing Bu₃N (0.190 mL, 0.800mmol). After 10 min of stirring at room temperature, the mixture was slowly added to a suspension of histamine (0.136g, 1.230 mmol) in 10 mL of DMF/H₂O (1:1) stirring at 5 °C. The mixture was stirred for 2h at 5 °C, after which the volatiles were evaporated under vacuum at temperatures less than 50 °C. The remaining solid was dissolved in warm aqueous ethanol (1:1, 20 mL) and acidified with 2.0 *N* HCl solution to pH = 4 at – 30 °C for 16 h to yield a white precipitate (0.109 g, 53%) that was filtered, washed with cold water, and dried under vacuum. ¹H NMR (600 MHz, DMSO-*d*₆) δ 14.53 (s, 1H, Imz–N*H*), 9.01 (d, *J* = 1.4 Hz, 1H, Imz-C*H*), 8.04 (t, *J* = 5.7 Hz, 1H, CO–N*H*), 7.41 (s, 1H, Imz–C*H*), 6.40 (d, *J* = 23.2 Hz, 2H, –N*H*), 4.31 (dd, *J* = 7.8, 5.1 Hz, 1H, –C*H*), 4.12 (ddd, *J* = 7.4, 4.6, 1.8 Hz, 1H, –C*H*), 3.08 (ddd, *J* = 8.6, 6.1, 4.4 Hz, 1H, –C*H*), 2.83 (dd, *J* = 12.4, 5.1 Hz, 1H, –C*H*₂), 2.78 (t, *J* = 6.8 Hz, 2H, –C*H*₂), 2.59 (s, 1H, –C*H*₂), 2.04 (t, *J* = 7.4 Hz, 2H, –C*H*₂), 1.64 – 1.38 (m, 4H, –C*H*₂), 1.25 (ddt, *J* = 18.9, 13.4, 6.5 Hz, 2H, –C*H*₂). ¹³C NMR (75 MHz, DMSO) δ 172.24, 162.73, 131.03, 116.07, 61.06, 59.22, 55.42, 37.26, 35.12, 28.17, 28.05, 25.23, 24.51. ESI-HRMS (MeOH) *m*/*z* calcd for C₁₅H₂₃N₅O₂S [M+H]⁺ 338.1651, found 338.1636.

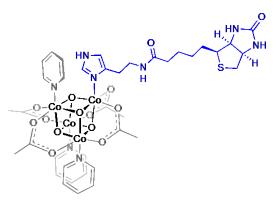
Preparation of biot-1, biot-gaba-1, biot-py-1, and biot-histamine-1. Substitution reactions with **1** were performed in stirred MeOH suspensions (20 mL) at 50 °C during 4 h for acetate derived ligands (biotin and biot-gaba) and for 2 h for pyridine and imidazole donor moieties (biot-py and biot-histamine). These resulted in dark green solutions containing mono- and di-biotinylated derivatives. Volatiles were removed under vacuum and the crude product was wet loaded onto a chromatography column of silica gel with a mobile phase of CH₂Cl₂/MeOH (99:1) with a gradual increase of polarity up to (9:1). Further purification of the mono-biotinylated fraction was performed by wet loading onto basic alumina and elution with a mixture of CH₂Cl₂/MeOH (99:0.1) with a gradient to (95:5).


biot-1: Yield: 12.44% from **1** (0.200 g, 0.235 mmol) and biotin (0.057 g, 0.235 mmol). Dark green solid [Rf. in SiO₂ with CH₂Cl₂/MeOH (9:1) = 0.5; Al₂O₃ with CH₂Cl₂/MeOH (95:5) = 0.6]. ¹H NMR (500 MHz, Methanol- d_4 , 25 °C) δ 8.42 (d, *J* = 5.9 Hz, 8H, aryl-*H*), 7.72 – 7.63 (m, 4H, aryl-*H*), 7.20 (q, *J* = 6.0 Hz,


8H, aryl-*H*), 4.45 (ddd, *J* = 24.3, 7.9, 4.9 Hz, 1H, C*H*), 4.26 – 4.22 (m, 1H, –C*H*), 3.20 – 3.10 (m, 1H, –C*H*), 2.89 (ddd, *J* = 23.5, 12.7, 4.9 Hz, 1H, –C*H*₂), 2.70 (dd, *J* = 18.5, 12.7 Hz, 1H, –C*H*₂), 2.45 – 2.31 (m, 2H, –C*H*₂), 2.11 (s, 9H, –C*H*₃), 1.73 – 1.36 (m, 6H, –C*H*₂). ¹³C {¹H</sup> }

(151 MHz, MeOD, 25 °C) δ 190.53, 188.29, 188.26, 188.22, 154.14, 154.12, 154.09, 138.95, 125.27, 125.23, 63.34, 61.59, 57.27, 56.91, 41.06, 40.30, 40.21, 30.01, 29.80, 29.67, 29.42, 26.95, 26.60, 26.43, 26.40. Elem. anal. calcd for [C₃₆H₄₄Co₄N₆O₁₃S · 1.5 CH₂Cl₂ · MeOH]:
C: 38.66, H: 4.30, N: 7.03, S: 2.68; found C: 38.67, H: 4.36, N: 7.36, S: 2.75. ESI-HRMS (MeOH) *m/z* calcd for C₃₆H₄₄Co₄N₆O₁₃S [M + H]⁺ 1037.0093, found 1037.0070; [M + Na]+ 1058.9913, found 1058.9878.

biot-gaba-1: Yield: 8.3% from **1** (0.100 g, 0.118 mmol) and biotin (0.037 g, 0.118 mmol). Dark green solid [Rf. in SiO₂ with CH₂Cl₂/MeOH (9:1) = 0.36; Al₂O₃ with CH₂Cl₂/MeOH (95:5) = 0.48]. ¹H NMR (500 MHz, Methanol- d_4 , 25 °C) δ 8.42 (m, 8H, aryl-*H*), 7.68 (t, *J* =



6.6 Hz, 4H, aryl-*H*), 7.20 (t, *J* = 5.8 Hz, 8H, aryl-*H*), 4.43 (ddd, *J* = 15.0, 7.9, 4.8 Hz, 1H, – C*H*), 4.24 (ddd, *J* = 15.5, 7.9, 4.5 Hz, 1H, –C*H*), 3.16 (m, 2H, –C*H*₂), 3.14 (m, 1H, –C*H*), 2.87 (ddd, *J* = 24.0, 12.7, 5.0 Hz, 1H, –C*H*₂), 2.67 (dd, *J* = 12.7, 7.3 Hz, 1H, –C*H*₂), 2.47 – 2.38 (m, 2H, –C*H*₂), 2.11 (d, *J* = 3.4 Hz, 9H, –C*H*₃), 1.78 (p, *J* = 7.3 Hz, 2H, –C*H*₂), 1.61 (m, 4H, –C*H*₂), 1.38 (p, *J* = 7.8 Hz, 2H, –C*H*₂). ¹³C {¹H } (151 MHz, MeOD, 25 °C) δ 189.91, 189.86, 188.31, 188.28, 188.26, 175.85, 154.14, 154.12, 138.95, 129.04, 125.28, 125.24, 63.31, 61.60, 56.93, 49.43, 41.00, 40.04, 38.03, 36.79, 29.73, 29.45, 26.85, 26.51, 26.45, 26.43, 26.41, 26.39. Elem. anal. calcd for [C₄₀H₅₁Co₄N₇O₁₄S · 2.0 CH₂Cl₂ · MeOH]: C: 38.52, H: 4.39, N: 7.49, S: 2.45; found C: 38.87, H: 4.62, N: 7.87, S: 2.59. ESI-HRMS (MeOH) *m*/*z* calcd for C₃₉H₄₉Co₄N₇O₁₄S [M + H]⁺ 1122.0621, found 1122.0683; [M + Na]⁺ 1144.0440, found 1144.0502. **biot-py-1**: Yield: 11.15% from **1** (0.200 g, 0.235 mmol) and biotin (0.074 g, 0.235 mmol). Dark green solid [Rf. in SiO₂ with CH₂Cl₂/MeOH (9:1) = 0.31; Al₂O₃ with CH₂Cl₂/MeOH (95:5) = 0.6]. ¹H NMR (600 MHz, Methanol- d_4 , 25 °C) δ 8.42 (d, J = 5.1 Hz, 4H, aryl-H), 8.39 (d, J = 5.1 Hz, 2H, aryl-H), 8.32 (d, J = 5.9 Hz, 2H, aryl-H), 7.78 (t, J = 7.6 Hz, 1H, aryl-H), 7.67 (t, J = 7.6 Hz, 2H, aryl-H), 7.06 (d, J =

5.6 Hz, 2H, aryl-*H*), 4.50 (dd, *J* = 8.0, 5.0 Hz, 1H, -*CH*), 4.40 (s, 2H, -*CH*₂), 4.33 (dd, *J* = 7.8, 4.5 Hz, 1H, -*CH*₂), 3.26 (dt, *J* = 9.8, 5.0 Hz, 1H, -*CH*), 2.95 (dd, *J* = 12.8, 5.0 Hz, 1H, -*CH*₂), 2.73 (d, *J* = 12.6 Hz, 1H, -*CH*₂), 2.40 (t, *J* = 7.4 Hz, 2H, -*CH*₂), 2.11 (s, 12H, -*CH*₃), 1.84 - 1.64 (m, 4H, -*CH*₂), 1.55 (q, *J* = 7.8 Hz, 2H, -*CH*₂). ¹³C NMR (151 MHz, MeOD, 25 °C) δ 188.31, 188.28, 176.21, 154.11, 154.07, 153.84, 152.04, 138.98, 138.96, 125.34, 125.25, 123.25, 63.47, 61.65, 57.08, 42.38, 41.07, 36.75, 30.02, 29.61, 26.90, 26.43, 26.42, 26.41. Elem. anal. calcd for [C₃₉H₄₉Co₄N₇O₁₄S · 2.0 CH₂Cl₂ · MeOH]: C: 38.52, H: 4.39, N: 7.49, S: 2.45; found C: 38.56, H: 4.76, N: 7.90, S: 2.56. ESI-HRMS (MeOH) *m/z* calcd for C₃₉H₄₉Co₄N₇O₁₄S [M + H]⁺ 1108.0464, found 1108.0429; [M + Na]⁺ 1130.0284, found 1130.0221.

biot-histamine-1: Yield: 2% from 1 (0.140 g, 0.164 mmol) and biotin (0.055 g, 0.164 mmol). Dark green solid [Rf. in SiO₂ with CH₂Cl₂/MeOH (9:1) = 0.12; Al₂O₃ with CH₂Cl₂/MeOH (95:5) = 0.30]. ¹H NMR (500 MHz, Methanol- d_4 , 25 °C) δ 8.51 (d, J = 5.5 Hz, 2H, aryl-H), 8.42 (d, J = 5.5 Hz, 4H, aryl-H), 7.87 (t, J = 7.6 Hz, 1H, aryl-H), 7.66 (t, J = 7.6 Hz, 2H, aryl-H), 7.33 (t,

biot-Histamine-1

J = 6.8 Hz, 2H, aryl-*H*), 7.18 (t, *J* = 6.7 Hz, 4H, aryl-*H*), 6.66 (s, 1H, Imz–C*H*), 4.49 (dd, *J* = 7.9, 5.0 Hz, 1H, –C*H*), 4.30 (dd, *J* = 7.9, 4.5 Hz, 1H, –C*H*), 3.36 (m, 2H, –C*H*₂), 3.21 (dt, *J* = 9.7, 5.2 Hz, 1H, –C*H*), 2.93 (dd, *J* = 12.8, 5.0 Hz, 1H, –C*H*₂), 2.71 (d, *J* = 12.7 Hz, 1H, –

CH₂), 2.63 (t, J = 7.3 Hz, 2H, $-CH_2$), 2.24 (t, J = 7.3 Hz, 2H, $-CH_2$), 2.11 (s, 6H, $-CH_3$), 2.08 (s, 6H, $-CH_3$), 1.77 - 1.57 (m, 4H, $-CH_2$), 1.45 (p, J = 7.6 Hz, 2H, $-CH_2$).¹³C NMR (176 MHz, MeOD, 25 °C) δ 188.22, 188.04, 176.14, 154.14, 154.11, 139.14, 138.93, 138.85, 129.21, 126.77, 125.28, 125.24, 124.81, 63.38, 61.64, 57.02, 41.05, 39.68, 36.78, 29.83, 29.50, 26.84, 26.43, 26.40, 26.34, 26.14. ESI-HRMS (MeOH) *m*/*z* calcd for C₃₈H₅₀Co₄N₈O₁₄S [M + H]⁺ 1111.0573, found 1111.0520; [M + Na]⁺ 1133.0393, found 1133.0353.

Preparation of Sav variants. Construction of $E_{101}Q/K_{121}A$ -Sav and other variants were achieved by site-directed mutagenesis (SDM) using the codon optimized $K_{121}A$ -pET24a-Sav plasmid,¹ the following primers and, and Q5 polymerase.

 $E_{101}Q_{fwd}$: 5'-GGTGCACAAGCACGCATTAATACCC-3' $E_{101}Q_{rev}$: 5'-GTGCTTGTGCACCACCAACATACTG-3' $S_{112}Y_{fwd}$: 5'-GACCTACGGCACCACCGAAGCAAATGC-3' $S_{112}Y_{rev}$: 5'-GTGCCGTAGGTCAGCAGCCACTGG-3' $S_{112}F_{fwd}$: 5'-CTGCTGACCTTTGGCACCACCGAAGC-3' $S_{112}F_{rev}$: 5'-TGGTGCCAAAGGTCAGCAGCCACTGG-3'

Amplification of pET24a-Sav mutant plasmids was accomplished by transformation of SDM reaction mixtures into DH5 α ultracompetent cells. Plasmids were isolated using a Miniprep kit from Qiagen, eluting the final plasmid with distilled deionized-water (ddH₂O, 18 M Ω cm⁻¹). DNA sequencing was performed by Genewiz.

Sav Expression. Transformation of 3 μ L amplified plasmids into 50 μ L Rosetta cells, was followed by rescue with 450 μ L LB media. Of this solution 200 μ L were spread aseptically onto LB/Kanamycin agar plates and incubated overnight at 37 °C. Inoculation of a starter culture containing 500 mL LB media and the same antibiotic from a single colony was followed by incubation overnight at 37 °C and shaking at 225 rpm. From this starter culture, 25 mL was used to inoculate each 2L flask containing 500 mL LB media, 25 mL each of 20x sugar (12% glycerol, 1% glucose, 10% lactose) and salt (1 M Na₂HPO₄, 1 M KH₂PO₄, 0.5 M (NH₄)₂SO₄) stocks, 1 mL of 1 M MgSO₄, 100 μ L

5000x trace metal mix (containing 1 M CaCl₂, 100 mM FeCl₃, 10 mM MnCl₂, 10 mM ZnSO₄, 2 mM CoCl₂, 2 mM CuCl₂, 2 mM NiCl₂, 2 mM Na₂MoO₄, and 2 mM H₃BO₃ all in 60 mM HCl), and 250 μ L of 100 mg/mL Kanamycin. Incubation at 37 °C and 225 rpm was continued until cells reached OD₆₀₀ = 0.6–0.8, at which point the temperature was dropped to 25 °C and cultures incubated another 24 h.

Sav purification. Cultures were centrifuged at 4000 x g for 10 min at 4 °C. The resulting cell pellet was resuspended in lysis buffer (50 mL per L expressed) containing 20 mM Tris buffer pH 7.4, 1 mM PMSF, 1 mg/mL lysozyme, and a spatula tip of DNase I. The suspension was then incubated at 37 °C and 225 rpm for 45 min followed by one freezethaw cycle. Dialysis against 6 M guanidinium hydrochloride pH 1.5 for 24 h was followed by neutralization via dialysis against 20 mM Tris buffer pH 7.4 for 24 h. Dialysis overnight against iminobiotin (IB) buffer containing 500 mM NaCl and 50 mM NaHCO₃ at pH 9.8 afforded the crude, biotin-free lysate. This material was centrifuged at 10,000 x g for 45 min at 4 °C and the soluble portion loaded onto an iminobiotinagarose column pre-equilibrated with IB buffer. The column was washed with 6 CVs of IB buffer or until the absorbance at 280 nm (A_{280}) dropped to zero. Elution with 1% AcOH in ddH₂O, and pooling fractions by A₂₈₀, provided highly pure (>95%) Sav as assessed by 18% SDS-PAGE. Pooled fractions were dialyzed against 10 mM Tris pH 7.4 for 24 h, followed by dialysis in ddH₂O for an additional 24 h and were then lyophilized. Yields of lyophilized protein were typically 100 mg per L expressed and the solid protein was stored at 4 °C.

Binding titrations. To 2.4 mL of 8 μ M Sav in 200 mM NaPi pH 7 was added 300 μ L of 10 mM 2-(4'-hydroxyazobenzene)benzoic acid (HABA). After 3 min equilibration the absorbance at 506 nm was recorded. 10 μ L aliquots of 1 mM biot- β -Ala-1 in water were added sequentially, the cuvette inverted, and the absorbance at 506 nm recorded until no further changes in intensity were observed.

Electrochemical methods for ArM samples (biot- β -Ala-1 \subset 2xm-S₁₁₂X-Sav).

Sample preparation. To remove any decomposition products of biot-β-Ala-1, or trace amounts of unbound metallocofactor, samples were subjected to size exclusion chromatography as follows. To a known concentration of solution of ~1 mM Sav in ddH₂O (ε₂₈₀ = 167,760 M⁻¹ cm⁻¹) was added 8–10 eq. of solid biot-β-Ala-1 and the solution immediately loaded onto a Sephadex G-25 column. Running the column with water, the lower fraction (that containing bound biot-β-Ala-1) was pooled by eye and concentrated using 10,000 kDa MWCO spin filters purchased from Millipore. The final concentration of biot-β-Ala-1 ⊂ Sav was determined from $ε_{350} = 4,742$ M⁻¹ cm⁻¹ reported by Das and coworkers for 1 in water.⁴ Samples were allowed to equilibrate with water by storing overnight at 4 °C to emulate crystallography soaking conditions in which ligand exchange between acetate and water was consistently observed. Samples were then diluted to their final concentrations in a final volume of 250 µL containing 100 mM potassium phosphate (KPi) at the indicated pH.

Instrumentation. Experiments were performed in a home built Faraday cage using a Pine WaveDriver 10 potentiostat with the data analyzed using AfterMath software. All potentials were measured against a saturated Ag/AgCl reference electrode using glassy carbon working (3 mm diameter) and counter (5 mm diameter) electrodes and converted to NHE by subtraction of 0.197 V from the recorded value. The working electrode was cleaned with diamond polish (15, 3, then 1 µm granules sequentially) between every measurement.

Square wave voltammetry (SWV). SWV Experiments were performed using a pulse amplitude of 25 mV, an increment of 1 mV, a 5 s period and sampling width of 250 ms. Oxidation potentials were determined by first smoothing the raw data by 10-point FFT filtering to eliminate the presence of minor extrema, followed by differentiation to locate the global peak maxima, all using OriginPro 2017 software. The point at which derivative spectra equal zero were selected for the E_p reported in plots of E_p versus pH.

S10

The raw data are presented in the SWV traces, while the anodic peak potentials (E_p) were determined in this way.

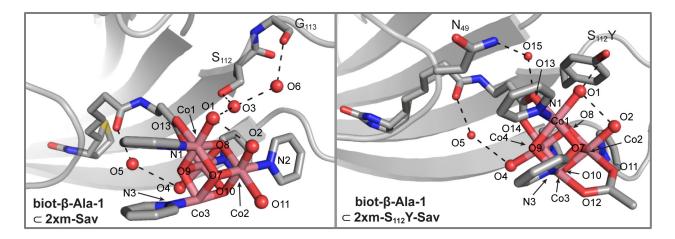
Cyclic voltammetry (CV). The CV experiments provided in Figure S4 were performed at 2 mV/s by scanning anodically from 1 to 1.5 V followed by a reverse segment to 0.9 V and then a final anodic sweep. Samples were prepared in an identical fashion to those used for SWV experiments and stored at 4 °C in between data collection times.

Electrochemical methods with biot-Z-1 samples (no Sav).

CVs were obtained on a BASi Epsilon potentiostat. Experiments were performed at 25 °C in solutions of 100 mM KPi electrolyte in which the pH was adjusted by addition of ortho-phosphoric acid or KOH. The Thermo Orion 2-Star Benchtop pH meter used to determine pH and was calibrated using three points: pH 4, 7, 10 buffer solutions. A platinum wire counter electrode, glassy carbon working electrode (7 mm diameter, polished with 0.05 μ m alumina), and saturated Ag/AgCl (for pH 0-11) as reference electrode were used. CV Experiments were performed on samples of 500 μ L and addition of aliquots of 5 μ L - 20 μ L of acid or base. The small concentration differences created by this method of titration did not appear to affect the electrochemical behavior. Control experiments in which CV scans with buffer were collected at 100 mV/s before and after experimental runs revealed no increase in current or additional peaks. Experimental scans at each pH were performed at a range of scan rates and revealed no change of the value of the E_{1/2} or current. The values of midpoint potentials were calculated from the averaged E_p and E_a values reported by the BASi Epsilon-EC Ver 2.00.71 software.

Protein crystallization. Apo-Sav protein crystals were obtained at 20°C within two days by hanging-drop vapor diffusion technique mixing 1 μ L crystallization buffer (2.0 M (NH₄)₂SO₄, 0.1 M NaOAc, pH 4.0) and 4 μ L protein solution (26 mg/mL lyophilized protein in water). The droplet was equilibrated against a reservoir solution of 100 μ L

S11


crystallization buffer. Subsequently, single crystals of Sav were transferred sequentially to pH 5, 6 and then pH 7 soaking buffer containing 2.6 M (NH₄)₂SO₄, 0.1 M NaOAc, and then soaked overnight in 9 µL pH 7 soaking buffer, 1 µL 25 mM biot-β-Ala-1, and 0.5 µL of the original protein stock. For the crystal structures shown in Figure 2b, 1 µL of 10 mM Na₂IrCl₆ was also included in this mixture. After 24 h, crystals were transferred for 30 seconds into a cryo-protectant solution consisting of 30% (v/v) glycerol in soaking buffer and then shock-frozen in N₂₍₁₎.

XRD Data collection and processing. XRD Data were collected at the Advanced Light Source (BL8.2.1 and 8.2.2) and Stanford Synchrotron Radiation Light Source (BL5.0.2 and 9.2) at a wavelength of 1 Å, processed with software iMOSFLM7⁶ or XDS⁷ and scaled with AIMLESS (CCP4 Suite)⁶. The structure was solved by molecular replacement using program PHASER (CCP4 Suite)⁶ and the structure 2QCB from the PDB as input model with ligand and water molecules removed. For structure refinement REFMAC5 (CCP4 Suite)⁸ and PHENIX.REFINE⁹ were used. Ligand manipulation was carried out with program REEL using the small molecule crystal structures⁵ as input models. For water picking, electron density, and structure visualization, the software COOT¹⁰ was used. Figures were drawn with PyMOL (the Version 1.5.0.5, PyMOL Molecular Graphics System, Schrodinger, LLC). Crystallographic details, processing and refinement statistics are given in Table S5.

Structural Refinement. Apo-crystals of Sav variants soaked biot- β -Ala-1 constituted space group I4₁22 with virtually identical unit cell parameters (Table S5). A single Sav monomer was obtained per asymmetric unit after molecular replacement. Protein residues 2-12 and 133-159 of the *N*- and *C*-termini, respectively were not resolved in the electron density, presumably due to disorder. Starting from the Sav monomer the biological homotetramer is generated by application of crystallographic C2-symmetry axes along the x-, y- and z-axes of the unit cell. The overall protein structures are virtually identical to structure biotin⊂ S₁₁₂K-Sav (PDB 2QCB, see Table S5).

General Complex Modeling. For all structures of apo-protein crystals soaked with the corresponding Co-complexes the following general observations were made: i) residual electron density in the F_0 – F_c map was observed in the biotin binding pocket, ii) in the biotin vestibule, which is flanked by protein residues of loop-3,4^A (the superscript number indicates Sav monomer within tetramer) loop-4,5^c, loop-5,6^A loop-7,8^A and loop-7,8^B, and iii), an anomalous dispersion density map indicated a significant peak in the biotin vestibule superimposed with the electron density peak (Figures S2B, S3B, S9B, S11C, S12C). The residual electron density was fit with the corresponding Co-complexes which projected Co atoms to the position of the strong anomalous density peak.

We do not believe that any Co(III) centers exist with a coordination number less than 6 but were not able to confidently assign a ligand to the electron density obtained in some cases. Based on our understanding of ligand substitution processes in solution,¹¹ it is likely that pyridine ligands remain bound, and rotation about the Co–N reduces the amount of electron density obtained. For acetate ligands, these sites are readily exchanged for water molecules in crystallo and in some cases dissociation/association processes may have prevented the observation of sufficient electron density. Each protein variant appears to produce some minor structural changes at the active site. These changes are difficult to predict (e.g. where and when a structurally conserved water molecules will be observed).

Table S1. Selected Bond (and H-bond) Lengths and Angles

	biot-β-Ala-1	biot- β -Ala-1 \subset	0 0	biot-β-Ala- 1	biot-β-Ala- 1 ⊂
Bond Lengths	$\subset 2$ xm-Sav	2xm-S ₁₁₂ Y-Sav	Angles	$\subset 2$ xm-Sav	2xm-S ₁₁₂ Y-Sav
C	(± 0.04 Å)	(± 0.05 Å)	0	(± 6 °)	(± 6 °)
Co1-07	2.07	2.03	Co1O7Co2	89	89
Co1-O8	2.20	2.10	Co1-O8-Co2	80	91
Co1-O9	1.81	2.06	Co1-O7-Co3	92	94
Co2–O7	1.89	1.98	Co1O9Co3	105	92
Co208	2.11	1.86	Co1O8Co4	83	86
Co2-O10	1.87	2.06	Co1O9Co4	90	86
Co3–O7	2.02	1.87	Co2O8Co4	94	99
Co3–O9	1.92	1.89	Co2O10Co3	95	84
Co3-O10	1.99	2.05	Co2-O10-Co4	91	93
Co4-O8	1.85	1.93	Co2O7Co3	94	91
Co4-O9	2.03	1.96	Co3O9Co4	92	97
Co4-O10	2.18	1.90	Co3-O10-Co4	86	94
Co1-O1	1.95	2.17	O1–Co1…Co2	93	93
Co2–O2	1.79	2.08	Co1Co2–O2	81	90
Co4-O4	2.25	2.32	O14-Co4-O4	88	83
Co2011	2.29	2.08			
Co3-O12	-	2.11			
Co1-O13	2.12	2.08			
Co4-014	1.98	2.03			
O1…O2	2.62	2.96			
O1O3	3.24	-			
$O1 \cdots O_{Tyr112}$	-	3.07			
O3…O _{Ser112}	3.14	-			
O3…O6	2.74	-			
O6…O _{Gly113}	2.93	-			
O4…O5	3.28	3.49			
O5…Obiot	2.80	2.89			
O13O15	-	2.47			
O12···N _{Asn49}	-	2.73			
Co1-N1	2.09	2.28			
Co2-N2	2.38	2.60			
Co3-N3	2.10	2.46			
Co4-N4	2.33	2.34			

Table 32. Oxidation potentials for blot-p-Ala-1 C 2xin-3/12x-3av variants					
		<i>E</i> _p (V vs NHE)			
pН	S	F	Y		
6.0	1.261	1.241			
6.5	1.204	1.216	1.206		
7.0	1.194	1.185	1.187		
7.5	1.150	1.155	1.181		
8.0	1.130	1.113	1.158		
8.5		1.115	1.115		
9.0	1.126	1.111	1.105		
9.5			1.104		
10.0	1.128		1.050		
10.5			0.953		
11.0			0.904		
Latter codes S. E. and V.	orrespond to amino acide	at position 112 in 2vm Sau			

Table S2. Oxidation potentials for biot- β -Ala-1 \subset 2xm-S₁₁₂X-Sav variants

Letter codes S, F, and Y correspond to amino acids at position 112 in 2xm-Sav.

E (V vs NHE)						
pН	biot-1	biot-β-Ala-1	biot-GABA-1	biot-Py-1		
1.5	1.299	1.333	1.312	1.337		
2.0	1.280	1.300	1.298	1.292		
2.5	1.238	1.256	1.248	1.248		
3.0	1.223	1.249	1.232	1.238		
3.5	1.211	1.245	1.225	1.228		
4.0	1.212	1.244	1.228	1.226		
5.5	1.210	1.242	1.226	1.227		
6.0	1.213	1.240	1.228	1.230		
6.5	1.216	1.240				
7.5	1.218	1.250	1.229	1.232		
8.0		1.244	1.229	1.231		
9.0		1.240	1.232	1.234		

Table S3. E_{1/2} values for biot-Z-1 complexes in the absence of Sav

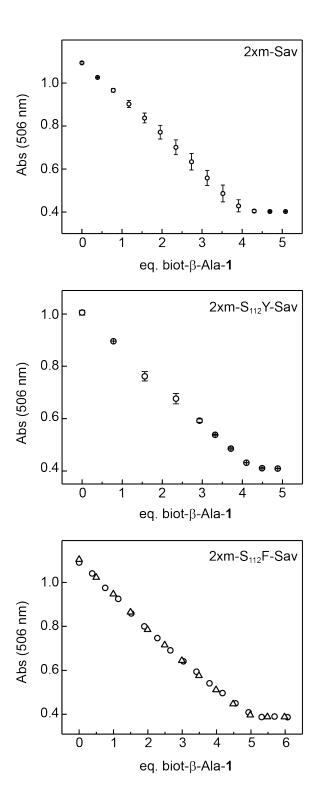
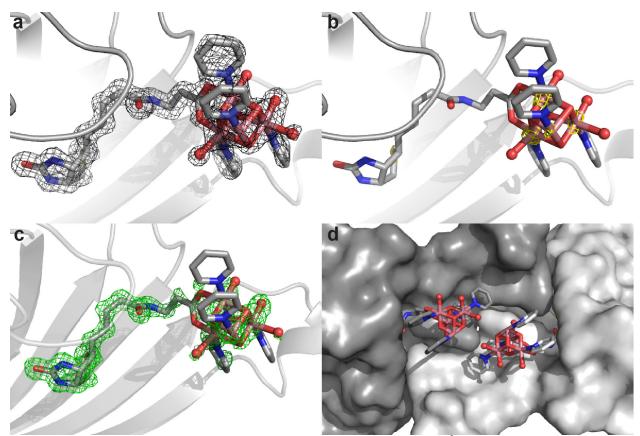
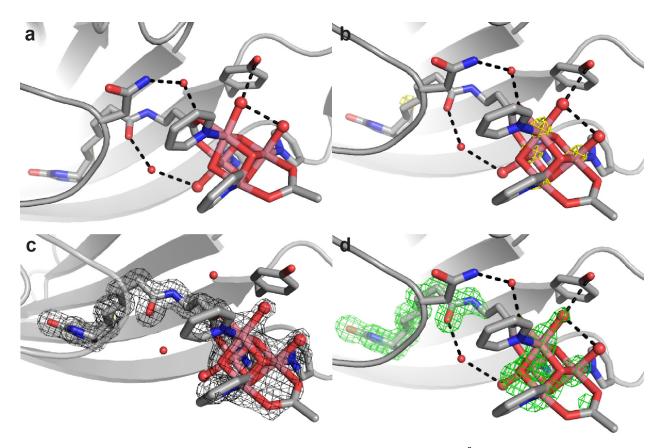
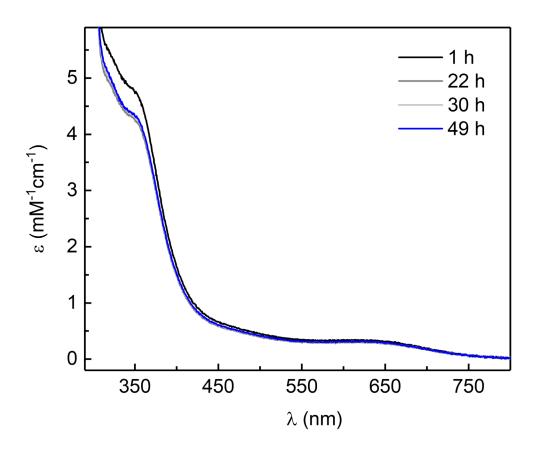

	a stri peak callent	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	
	Ip (uA/mM)/I _{p,max} (µA/n	nM)
pН	S	F	Y
6.0	0.41	0.45	
6.5	0.37	0.60	0.49
7.0	0.35	0.49	0.68
7.5	0.44	0.75	0.43
8.0	0.33	0.60	1.00
8.5		0.55	0.62
9.0	0.49	0.53	0.51
9.5			0.25
10.0	0.53		0.38
10.5			0.13
11.0			0.09
			T

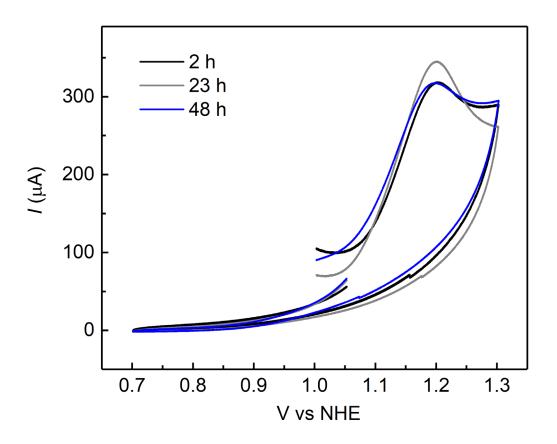
Table S4. Normalized SWV peak current for biot- β -Ala-1 \subset 2xm-S₁₁₂X-Sav variants

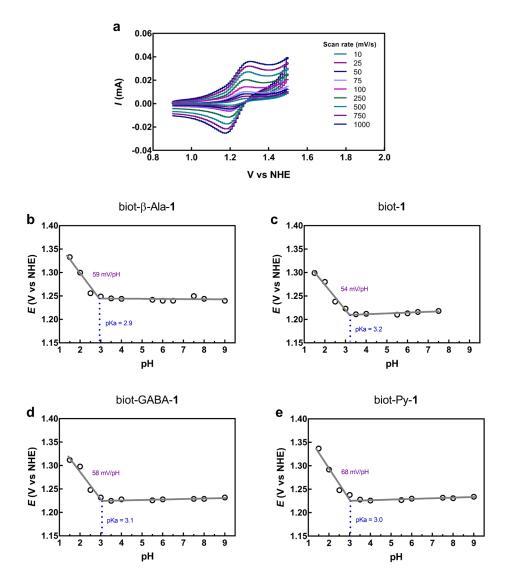

Letter codes S, F, and Y correspond to amino acids at position 112 in 2xm-Sav. $I_{p,max}$ was 1.64 μ A/mM, obtained with biot- β -Ala-1 \subset 2xm-S₁₁₂Y-Sav (1 mM biot- β -Ala-1, 0.25 mM 2xm-S₁₁₂Y-Sav) at pH 8.0.

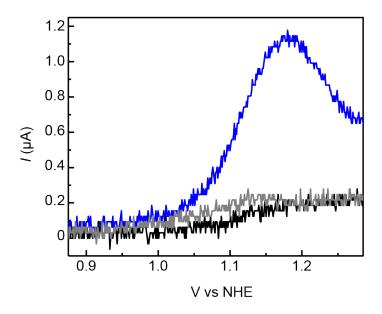
Identification					
Sav variant	2xm	2 xm- S_{112} Y	2xm-S ₁₁₂ Y	$2xm-S_{112}Y$	2xm-S ₁₁₂ F
ligand	biot-β-Ala-1	biot-β-Ala-1	biot-β-Ala-1	biotin	biot-β-Ala-1
PDB code	6AUC	6AUE	6AUH	6AUL	6AUO
3-letter ligand code	OLS	OL3	OL5	BTN	OL4
	I	Data Process	ing		
Unit cell	I4 ₁ 22	I4 ₁ 22	I4122	I4122	I4 ₁ 22
	a, b = 57.58,	a, b = 57.94,	a, b = 57.70,	a, b = 57.75,	a, b = 57.56,
Space group	c = 183.79	c = 184.57	c = 183.77	c = 184.09	c = 183.72
	α , β , γ = 90 °	α , β , γ = 90 °	α , β , γ = 90 °	$\alpha, \beta, \gamma = 90^{\circ}$	α , β , γ = 90 °
Resolution (Å)	54.95 - 1.46	37.45 - 1.36	37.29 - 1.60	37.33 - 1.36	45.93 - 1.70
Highest resolution shell (Å)	1.49 - 1.46	1.39 - 1.36	1.63 - 1.60	1.39 - 1.36	1.73 - 1.70
R _{merge} (%)	8.3 (38.8)	6.3 (64.4)	18.0 (305.5)	6.3 (86.9)	55.1 (1673)
No. of unique reflections	226791 (7959)	348106 (11567)	224511 (9593)	33716 (1485)	435110 (21112)
Multiplicity	8.3 (6.0)	10.2 (7.0)	10.6 (9.7)	10.2 (7.2)	24.8 (23.3)
I/sig(I)	13.2 (2.9)	14.2 (1.6)	8.9 (1.7)	14.9 (1.7)	16.5 (6.2)
Completeness	99.9 (100.0)	99.8 (96.1)	99.9 (98.2)	99.4 (90.9)	100 (100)
CC(1/2)	0.995 (0.873)	0.999 (0.691)	0.944 (0.625)	0.996 (0.665)	0.995 (0.947)
		Structure refine	ement		
R _{work}	0.1779	0.2026	0.1951	0.1798	0.1895
R _{free}	0.2006	0.2290	0.2194	0.1952	0.2218
Rmsd bond length (Å)	0.0440	0.0508	0.0317	0.0300	0.0331
Rmsd bond angle (°)	5.9154	6.3149	5.7007	2.6220	5.0735
Rmsd compd to biotin ⊂ wt-Sav (1STP, Å)	0.620	0.652	0.627	0.365	0.645
	L	Ligand mod	el		
Avg. anomalous dispersion density at Co (σ)	9.8	9.5	5.1	-	6.3
B factor (Ų) overall protein	17.3	20.3	22.3	19.7	20.5
S ₁₁₂ X	13.2	27.1	29.7	20.1	22.9
biot-β-Ala- 1	34.5	39.0	33.6	-	44.6
Co (Avg)	41.3	53.6	46.1	-	60.3
nearest Co–Co distance (Å)	5.7	4.7	6.2	-	5.5


Table S5. XRD Data processing and refinement statistics


Figure S1. Binding titrations performed using 2-(4'-hydroxyazobenzene)benzoic acid as described above for each of the three Sav variants used in these studies, as indicated. All experiments were performed in duplicate with independently prepared samples with standard deviations indicated with error bars (2xm-Sav and 2xm-S₁₁₂Y-Sav) or replicate trials represented by different shapes (2xm-S₁₁₂F-Sav).


Figure S2. XRD structure of biot- β -Ala-**1** \subset 2xm-Sav (1.46 Å resolution, PDB 6AUC) overlain with $2F_0-F_c$ electron density map contoured at 1 σ (black mesh, **a**), with anomalous density map contoured to 6 σ (yellow mesh, **b**), and with F_0-F_c omit map centered around biot- β -Ala-**1** contoured at 3 σ (green mesh, **c**) and a space filling model showing the dimer interface with in the Sav vestibule (**d**).


Figure S3. XRD structure biot- β -Ala-**1** \subset 2xm-S₁₁₂Y-Sav (1.36 Å resolution, PDB 6AUE, **a**); overlain with anomalous density map contoured at 5 σ (yellow mesh, **b**), $2F_{o}-F_{c}$ electron density map contoured at 1 σ (black mesh, **c**), and with $F_{o}-F_{c}$ omit map centered around biot- β -Ala-**1** contoured at 3 σ (green mesh, **d**).


Figure S4. Absorption spectra of biot- β -Ala- $1 \subset 2xm$ -Sav in water at the indicated time points after purification by size exclusion chromatography (samples were prepared in an identical fashion to those used for protein electrochemistry). When not in use samples were stored at 4 °C.

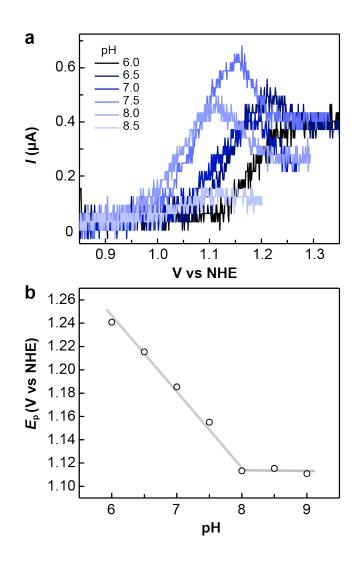

Figure S5. Cyclic voltammograms of biot- β -Ala-**1** \subset 2xm-Sav in 100 mM KPi at pH 7 scanning at 2 mV/s. Each trace represents a fresh aliquot taken from a single concentrated sample stored in water at 4 °C over the 48 h period.

Figure S6. CV Data collected at multiple scan rates in the presence of 1 mM biot- β -Ala-1 (no protein) in 100 mM KPi at pH 7 (**a**) and the corresponding $E_{1/2}$ vs pH plot for biot- β -Ala-1 (**b**), biot-1 (**c**), biot-gaba-1 (**d**), biot-py-1 (**e**). Gray lines represent the linear regression fits for these data obtained using GraphPad Prism 7.00 software.

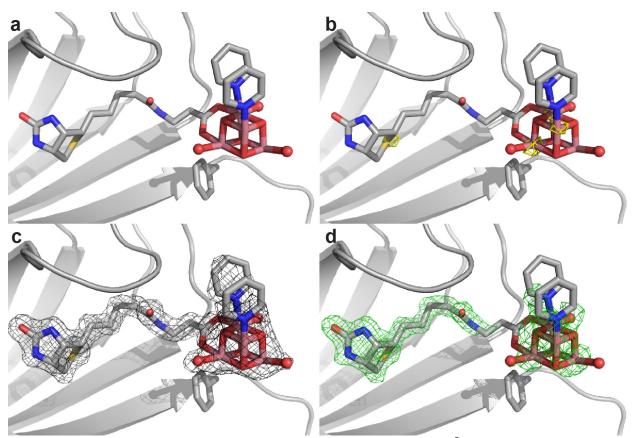


Figure S7. SWV performed at pH 7 with biot- β -Ala-1 \subset 2xm-Sav (blue). After the run, the working electrode was rinsed lightly with H₂O, placed in a fresh solution containing only buffer, and the SWV experiment was re-run (black). The sample solution from the original SWV experiment shown in blue was centrifuged in a 10 kDa MWCO spin filter to separate protein-bound species from bulk solution and the flow-through was again subjected to the SWV experimental conditions (gray).

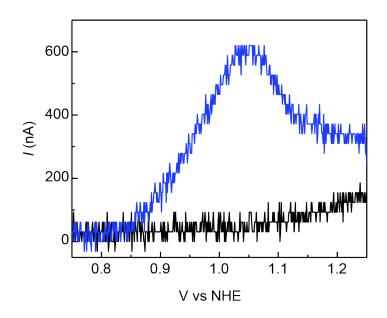
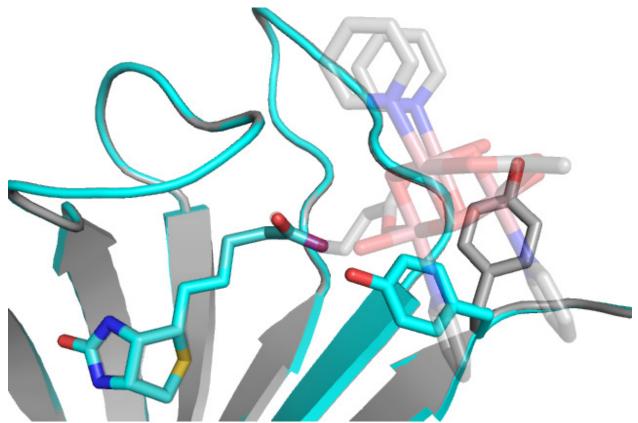
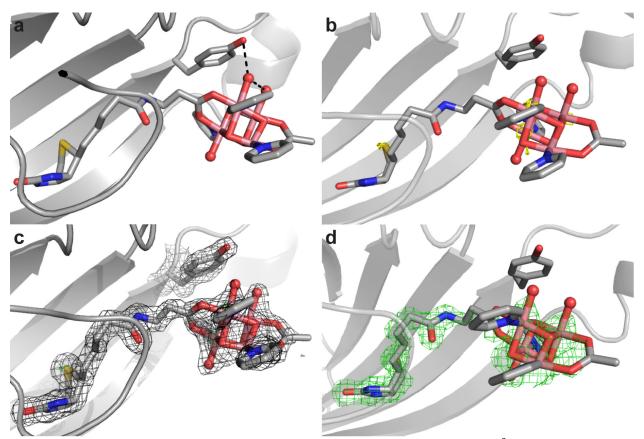
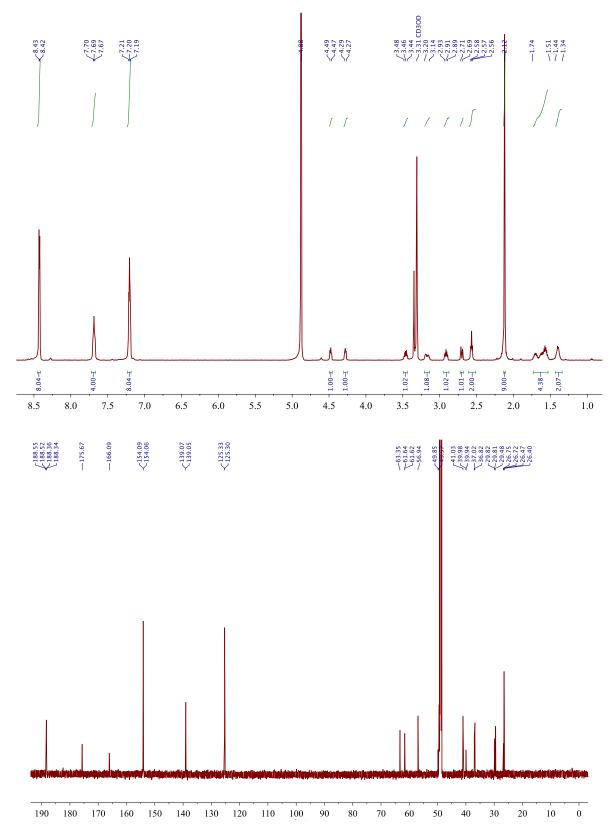


Figure S8. SWV data collected with 0.5 mM biot- β -Ala-**1** \subset 2xm-S₁₁₂F-Sav (**a**),¹ and a plot of the resulting peak potentials as a function of pH (**b**).


¹ Owing to the reduced solubility of this Sav variant, expression yields in the soluble fraction, and thus, total purified protein yields were low. The lower yield required a reduced concentration of protein to be used in SWV experiments and accordingly gave rise to lowered current.


Figure S9. XRD structures biot- β -Ala-**1** \subset 2xm-S₁₁₂F-Sav (1.42 Å resolution, PDB 6AUO, **a**); overlain with anomalous density map contoured at 3.5 σ (yellow mesh, **b**), $2F_{0}-F_{c}$ electron density map contoured at 1 σ (black mesh, **c**), and with $F_{0}-F_{c}$ omit map centered around biot- β -Ala-**1** contoured at 3 σ (green mesh, **d**).


Figure S10. SWV data collected at pH 10 in the presence of biot- β -Ala-**1** \subset 2xm-S₁₁₂Y-Sav (blue) and biotin \subset 2xm-S₁₁₂Y-Sav (black).

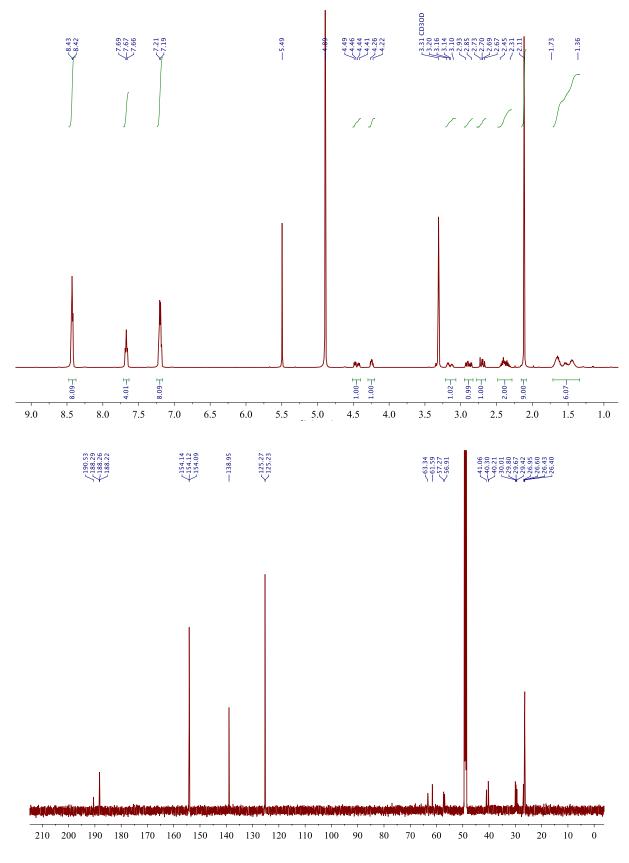

Figure S11. XRD structure of biotin $\subset 2xm$ -S₁₁₂Y-Sav (1.36 Å resolution, turquoise, PDB 6AUL) overlaid with that of biot- β -Ala-**1** $\subset 2xm$ -S₁₁₂Y-Sav (1.49 Å resolution, gray).

Figure S12. XRD structures biot- β -Ala-**1** \subset 2xm-S₁₁₂Y-Sav (1.60 Å resolution, PDB 6AUH, **a**), overlain with anomalous density map contoured at 5 σ (yellow mesh, **b**), $2F_o-F_c$ electron density map contoured at 1 σ (black mesh, **c**), and with F_o-F_c omit map centered around biot- β -Ala-**1** contoured at 3 σ (green mesh, **d**).

Figure S13. ¹H (top) and ¹³C (bottom) NMR spectra of biot-β-Ala-1.

Figure S14. ¹H (top) and ¹³C (bottom) NMR spectra of biot-1.

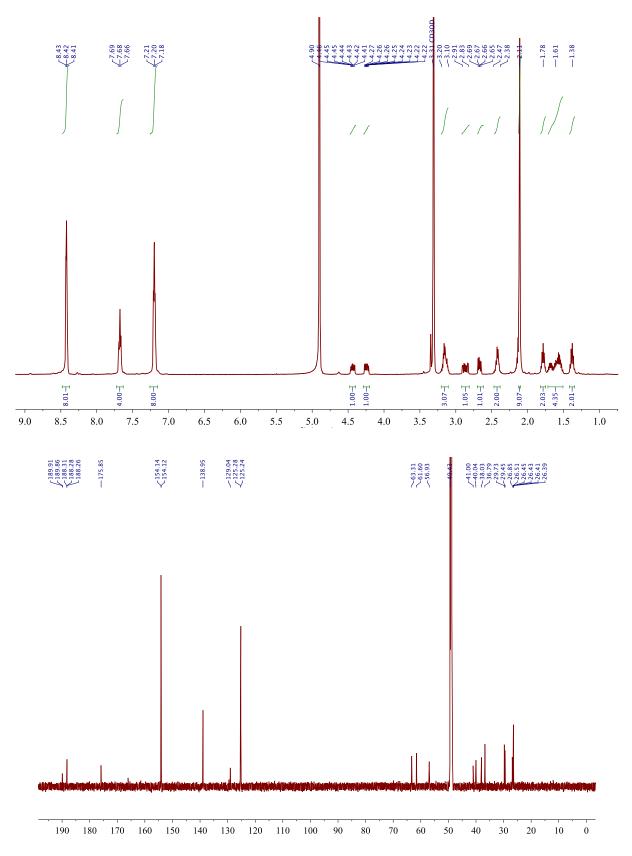


Figure S15. ¹H (top) and ¹³C (bottom) NMR spectra of biot-gaba-1.

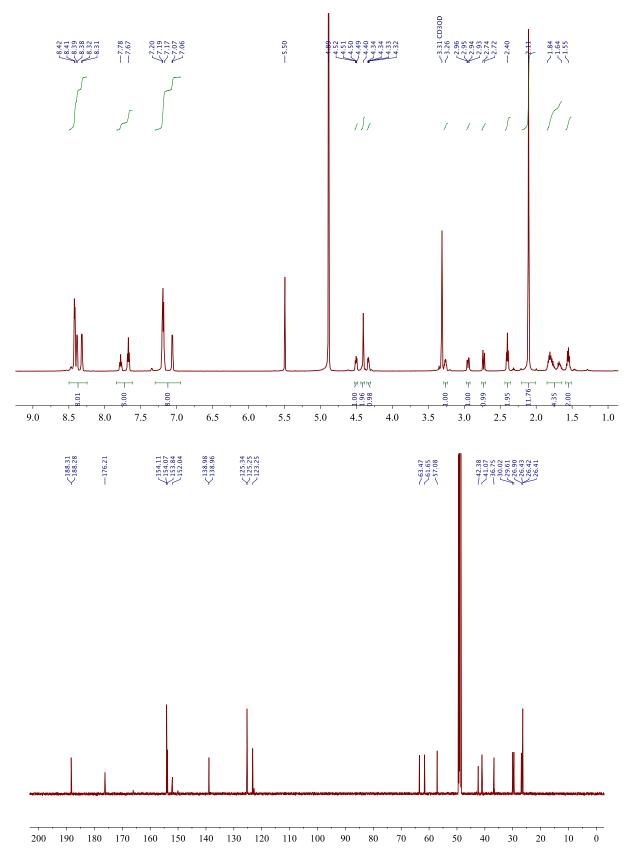


Figure S16. ¹H (top) and ¹³C (bottom) NMR spectra of biot-py-1.

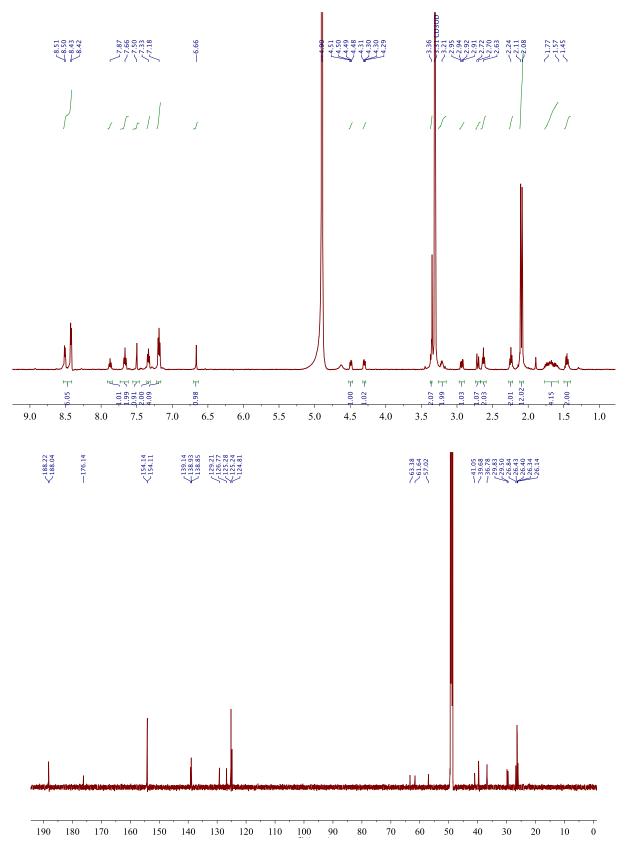


Figure S17. ¹H (top) and ¹³C (bottom) NMR spectra of biot-histamine-1.

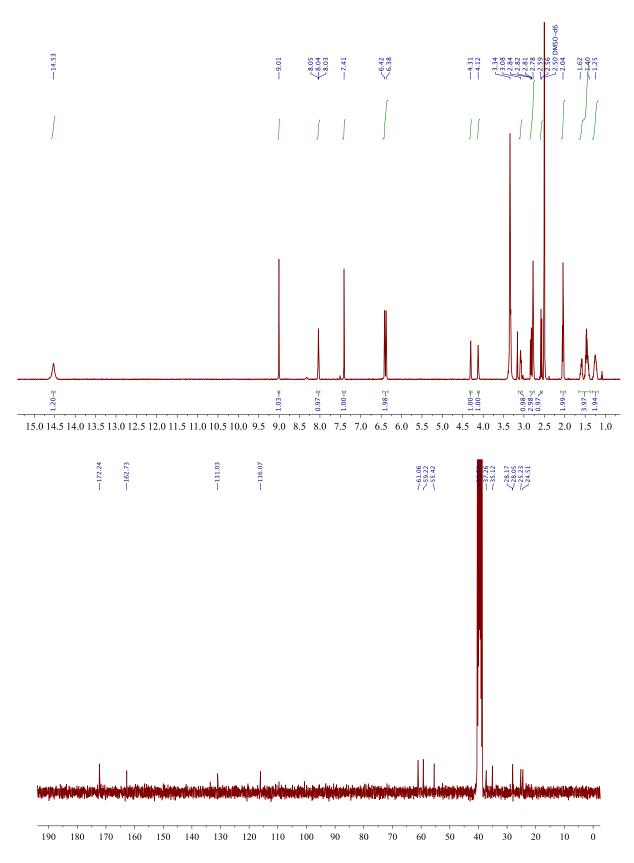


Figure S18. ¹H (top) and ¹³C (bottom) NMR spectra of biot-histamine.

REFERENCES

- (1) Mallin, H.; Hestericová, M.; Reuter, R.; Ward, T. R. Nat. Protoc. 2016, 11, 835–852.
- (2) McCormick, D. B. .; Roth, J. A. Anal. Biochem. 1970, 34, 226–236.
- (3) Chambers, J. M.; Lindqvist, L. M.; Webb, A.; Huang, D. C. S.; Savage, G. P.; Rizzacasa, M. A. *Org. Lett.* **2013**, *15*, 1–25.
- (4) Chakrabarty, R.; Bora, S. J.; Das, B. K. Inorg. Chem. 2007, 46, 9450–9462.
- (5) Ullman, A. M.; Liu, Y.; Huynh, M.; Bediako, D. K.; Wang, H.; Anderson, B. L.; Powers, D. C.; Breen, J. J.; Abruña, H. D.; Nocera, D. G. J. Am. Chem. Soc. 2014, 136, 17681–17688.
- (6) Evans, P. R. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 282–292.
- (7) Kabsch, W. Acta Crystallogr. D. Biol. Crystallogr. 2010, 66, 125–132.
- (8) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta Crystallogr. D. Biol. Crystallogr. 1997, 53, 240–255.
- (9) Adams, P. D.; Afonine, P. V; Bunkóczi, G.; Chen, V. B.; Davis, I. W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. *Acta Crystallogr. D. Biol. Crystallogr.* 2010, 66, 213– 221.
- (10) Emsley, P.; Cowtan, K. Acta Crystallogr. D. Biol. Crystallogr. 2004, 60, 2126–2132.
- (11) Nguyen, A. I.; Wang, J.; Levine, D. S.; Ziegler, M. S.; Tilley, T. D. *Chem. Sci.* **2017**, *8*, 4274–4284.