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1. Free monomers, oligomers and polymers in solution 

When a protein solution contains free monomers, oligomers and polymers, their momentary 
concentrations obey the equations 

[Pn]+[C] = [CΣ],       (S.1) 

[C1]+m[Cm] = [C],       (S.2) 
where:  
[CΣ] is the total concentration of protein molecules in solution,  
[Pn] is the concentration of polymerized monomers, 
[C] is the concentration of non-polymerized monomers,  
[C1] is the concentration of free monomers in solution, 
[Cm] is the concentration of oligomers that contain m monomers (“m-mers”) in solution, 

When momentary concentrations of free monomers and m-mers are in equilibrium, they obey the 
law of mass action1 

[C1]
m = K × [Cm],       (S.3) 

where K is the equilibrium constant. Equations (S.2), (S.3) determine [C1] (and then [Cm] as well) as 
functions of [C], m and K from the following equation: 

[C1]
m = (K/m) × ([C] - [C1]).      (S.3a) 

At low [C], when K >> m[C]m-1, we have [C1] ≈ [C] × (1 - m[C]m-1/K) ≈ [C] to a first approximation. 
At very high [C], when K << m[C]m-1, we have [C1] ≈ (K[C]/m)1/m << [C] to a first approximation.  
 

2. Linear regime of polymer growth  
This scenario of fibril growth from free monomers (Fig. 1S) is described by the following system of 
equations:2 
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the first of them describes an increase of fibril ends, the last – an increase of monomers involved in 
fibrils. Here [PE] is concentration of the ends of all polymers made of monomers, n* is the effective 
number of the former free monomers in the unstable nucleus of polymerization (Fig. 1S), ns is the 

number of monomers in the smallest stable polymer (a "seed"), and k+, k2 are the effective rate 

constants for initiation and elongation of polymers (“2” in “2k+” takes into account that creation of one 

new polymer creates two new polymer ends). In the following equations, we assume that k2, as well as 



2 
 

2 
 

k+, are the concentration-independent constants. Analyses of these assumptions see in Chapter 4 of this 
Supplement. 

The term k2[C1][P
E] in the last equation stands for involvement of monomers in the seeded 

polymerization, and the term nsk+[C1]
n*

 in this equation stands for involvement of monomers in 

"seeds" (i.e., the smallest stable polymers made of ns monomers); one can neglect this term because the 
rate of seeding (associated with k+) much smaller than the rate of seeded polymerization (associated 

with k2).  

 

 

Figure 1S. Free energy change during linear growth of a polymer and formation of competing 
oligomers. The "polymerization seed" of ns monomers is the smallest stable polymer; all polymers 
with n < ns are unstable. The effective rate of fibril growth is k2+[C1] - k2-, where k2+[C1] is the true rate 

of polymerization, and k2- is the true rate of depolymerization; it is assumed that the free monomer 

concentration [C1] is high, so that the polymerization is irreversible; then k2- is negligible as compared 

to k2+[C1], and the effective rate of polymerization of a fibril can be presented as k2[C1] ≈ k2+[C1]. 

 
Then Eq. (S.4) takes a simpler form2  
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where t is time. Using conditions [Pn]+[C] = [CΣ] = const and [C1]≡ [C]×([C1]/[C]), this system can be 
presented as 
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depend on relative concentrations of free monomers and oligomers. However, to a first approximation, 

one can take 1
+k  and 1

2k  as constants  
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during the first half period of amyloid aggregation (when it proceeds without pre-formed seeds), 
because then [Pn]t=0 = 0, [PE]t=0 = 0, d[PE]/dt|t=0 ≠ 0, while [C1]t ≈ [C1]t=0, [C]t ≈ [C]t=0 (and [C1]t=0 ~ 
[C]t=0 ≈ [CΣ] when the fraction of oligomers is relatively small); thus, [PE] changes with time t much 

faster than [C], [C1], 
1
+k  and 1

2k . In this case, the system (S.6) can be solved (with constant 1
+k , 1

2k ) 

analytically using a substitution ξt = *])/[]([ n

t CC Σ  (see2 item 1 in Supporting Information). The time-

dependent degree of involvement of monomers in polymers is2 
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is the single time parameter for the linear regime of the fibril growth process.  
Thus, for this regime, logarithms of all characteristic times of fibril growth can be presented as 

ln(time) = ])ln([
2

*
),*,( 2 Σ+ − C

n
kknconst 







+
−

Σ

=

][

][
ln

2

1* 01

C

Cn t     (S.10) 

These characteristic times include: Tlag, duration of the lag-period; T2, duration of the fast transition 
period; and t1/2, the transition half-time (i.e., the time required for 50% protein to aggregate); these Tlag, 

T2, and t1/2 have the same dependence on ln[CΣ] and ]/[][ 01 Σ= CC t , but different const(n*,k+,k2). 

 
3. Exponential regimes of polymer growth: "fragmentation" and "bifurcation" scenarios 

The "fragmentation" scenario (Fig. 2S a, b) can be described by the following system of equations:2 
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where the rate constant λ+ describes the rate of "secondary nucleation" by fragmentation, i.e., 
emergence of a pair of stable fibril fragments (with two "new" ends) from an "old" fibril and n2 
monomers forming the "secondary nucleus" of fragmentation (Fig. 2S b), or from an "old" fibril alone 
(Fig. 2S a) (in this case, the "secondary nucleus" consists of n2=0 monomers), while the rate constant 
λ- describes the rate of fusion of the ends of separate fibrils. In the both cases (a and b), the 

fragmentation creates m=2 new ends of the polymer. As above, we assume that λ+ is a concentration-
independent constant. For analysis of such an assumption, see Chapter 4 of this Supplement. 

 
The "bifurcation" scenario (Fig. 2S c, d) can be described by the following system of equations:2 
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where λ+ is the "secondary nucleation" rate constant by bifurcation, m is the number of new polymer 
ends created by one bifurcation, which can be m=1 when a new fibril forms as a branch of the existing 
one, thus producing one new end (Fig. 2S c), or m=2 in the case of lateral formation of a new fibril, 
thus producing two new ends (Fig. 2S d).  
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Figure 2S. Exponential regimes of polymer growth: (a) growth with a zero-size (n2=0) "secondary 
nucleus" of fragmentation; (b) growth with a fragmentation "secondary nucleus" of n2>0 monomers; 
(c) growth with the bifurcation "secondary nucleus" creating the fibril's new branch with one new 
growing end; (d) growth with the bifurcation "secondary nucleus" leading to the further lateral growth 
of the new fibril from its both ends. 
 

Neglecting relatively small terms in systems (S.11), (S.12) (in the last equations of these systems: 
those with initiation rate constants k+, λ+, as compared to those with the elongation rate constant k2; in 
the first equations of the systems: those with concentration of ends [PE], as compared to that of free 
monomers [C1]), one obtains a generalized system in the form 
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which describes both fragmentation (with 0
+λ  = +λ2 ) and bifurcation (with 0

+λ  = +λm ) scenarios of 

fibril growth.  
Using conditions [Pn]+[C] = [CΣ] = const and [C1]≡ [C]×([C1]/[C]), this system can be presented as 
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depend on relative concentrations of free monomers and oligomers. However, to a first approximation, 

one can take 1
+k , 1

2k  and 1
+λ  as constants,  
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during the first period of amyloid aggregation (when it proceeds without pre-formed seeds), because 
then [Pn]t=0 = 0, [PE]t=0 = 0, d[PE]/dt|t=0 ≠ 0, while [C1]t ~ [C1]t=0, [C]t ~ [C]t=0 (and [C1]t=0 ~ [C]t=0 ≈ 
[CΣ] when the fraction of oligomers is relatively small). Thus, [PE]t and [Pn]t = [CΣ] - [C]t change with 

time t much faster than [C]t. As a result, the system (S.13a) with constant 1
+k , 1

2k , 1
+λ  and [C] = [CΣ] 

takes the form 
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(see2 items 3, 4 in Supporting Information), which is sufficiently accurate for the first part of the 
process.  

Now, using the time-dependent degree of involvement of monomers in polymers, 
]/[][1 Σ−≡ CC ttµ  (cf. Eq. (S.8)), one can present the system (S.13b) in a simple form  
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and one can see that  
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so that  
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is a solution2 of the system (S.14), which is valid for the first part of the process. Note that the 
characteristic time T2 is now (in the case of exponential growth) independent of the primary fibril 
initiation rate constant k+.  

An analysis of this solution shows two main regimes of fibril growth with possible fragmentation or 
bifurcation: 

1) With A >> 1 (that is, with 2*
01

0 ]/[][ nn
tCCk

−
=Σ++ >> λ ), the value in parentheses in Eq. (S.18) is small 

(because µt cannot exceed unity), which means that 50% of the protein will be aggregated during the 
time t1/2 << T2, where 

2

*

1
2

1

2
2/1 ][

2

1
n

C
kkA

T
t

−

Σ

+

==  ≈ 
2

1*

012

*

2 ][

][
][

2

1
+

−

Σ

=
−

Σ
+









×

n

t

n

C

C
C

kk
≡ 

2

1

012

*

01
2 ][

][
][

2

1
−

Σ

=
−

=
+









×

C

C
C

kk

t

n

t . (S.19) 

This t1/2 does not contain 
1
+λ  or 

0
+λ  (showing that neither fragmentation nor bifurcation is important 

when A >> 1) and the same dependence on [CΣ] and ]/[][ 01 Σ= CC t as the T value given by Eq. (S.9) for 

the linear regime of the fibril growth process. 
2) With A << 1, the value in parentheses in Eq. (S.18) is large at the time t1/2 when 50% of the 

protein is aggregated, which means that t1/2 >> T2, and t1/2 can be estimated from the equation 

2/1)/exp()2/( 22/1 ≈× TtA ,          (S.20) 
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Note that this characteristic time t1/2 is now (in the case of exponential growth with A << 1, i.e., when 
2*

01
0 ]/[][ nn

tCCk −
=Σ++ << λ ) has a very weak (logarithmic) dependence on the primary fibril initiation rate 

constant k+ participating in A.  

The dependence on ln[CΣ] (or 01]ln[ =tC ) comes mostly from the first term of the sum; the value of 

( )( )A/1lnln  also depends on ln[CΣ], but this dependence is rather weak, because ln(1/A) = 
2*

01
0 ]ln[]ln[)2/ln( nn

tCCk
−

=Σ++ ++λ  >> 1.  
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where the second summand is small because ( )A/1ln  is large, and the second derivative  
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is small too (for the same reason) and, importantly, it is never positive for all values of n*, n2 and A.  

Thus, the strong positive curvature of the experimental )ln( 2/1t  on ]ln[ ΣC  dependence observed by 

Meisl et al.3 can in no way be explained by the non-linear (with respect to ]ln[ ΣC ) summand 

( )( )A/1lnln  present in )ln( 2/1t , and this positive curvature has to be attributed to a non-linear 

dependence of [C1] on [CΣ]. 
 

4. Kinetic constants for the polymerization process  
The effective rate of polymerization of a fibril is k2+[C1] - k2-, where k2+[C1] is the true rate of 

polymerization, and k2- is the true rate of depolymerization (Fig. 1S). If the free monomer 

concentration [C1] is much higher than the critical concentration of aggregation  

[C1*] ≡ k2-/k2+,            (S.25) 

the polymerization process is irreversible, and its effective rate, k2[C1], is k2+([C1] - [C1*]) ≈ k2+[C1]. 

This approximation (k2[C1] ≈ k2+[C1]) is not valid only when [C1] is close to [C1*] (say, when [C1*] < 

[C1] ≾ 3[C1*]). However, the concentration range examined in Ref. 3 covers almost two orders of 
magnitude (Fig. 1), so for the whole or at least the best part of this range, and especially for the high 
concentrations of interest, the approximation k2[C1] ≈ k2+[C1] (with the concentration-independent 

elongation constant k2) is valid. 

The rate of primary fibril initiation (estimated in the “steady-state approximation”,4 widely used in 

chemical kinetics) has a general form 1*
1][ −

+
nCk , which follows from the kinetic equation (S.2),  
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Where ]P
2

1
[ E  is the concentration of fibrils (because ]P[ E  is the concentration of fibril ends, and a 

fibril has two ends), [C1] is the concentration of free monomers, n* is the effective number of 
monomers absorbed by a primary nucleus of polymerization (that is, the size of a polymer 
corresponding to the free-energy barrier, i.e., having the highest free energy over the polymerization 
pathway), and k+ is the rate constant.  

It should be noted that the steady-state approximation usually implies that the high free-energy 
barrier corresponds to one step of the reaction; however, this approximation is also applicable when 
the free-energy barrier includes several steps5-7 (which is just the case for the fibril initiation, see Fig. 
1S). 

The rate constant k+ is usually assumed to be concentration-independent; this assumption is strictly 

valid for the barrier corresponding to one step of reaction, 4 but the case of a multi-step barrier requires  
more attentive consideration.5-7 Figure 3S presents a multi-state process with the free-energy barrier 
(corresponding to the true activated complex) made of n** monomers. 

The rate æ1→2→3→... of overcoming of a long free-energy barrier (leading to the ns-monomer seed, 
see Fig. 3S) can be presented5-7 as  

�
æ�→�→�…

≅∑ exp �
����
�
���

� �
æ���→�

��
��� ,             (S.26) 

where æ j-1→j is the rate of passage from the state j-1 to j; that is, in the polymerization reaction shown 

in Fig. 3S, æ 1→2 = k+1[C1]
n**-1 (where n** is the number of monomers in the activated, highest-free-

energy complex), and æ 2→3 = æ 3→4 = ... = k2+[C1].  
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Figure 3S. Free energy change during linear growth of a polymer. The activated complex consists of 
n** monomers (in the picture, n**=2 for simplicity, but between states "1" and "2" there can be a few 

intermediate states with free energies between G1 and G2). All polymers shorter than the "seed" are 
unstable. æj-1→j (j>1) is the rate of passage from the state j-1 to j. The true rate of formation of the 

activated complex is æ1→n**=2 = k1+[C1]
n**-1. The true rate of decay of this complex into monomers is 

k1-. The true rates of polymerization after formation of the activated complex are assumed to be equal 

to k2+[C1] (i.e., æ n*=2→3 = æ 3→4 = ... = k2+[C1]). The corresponding depolymerization rates are all 

equal to k2-. Thus, the free energy change at each polymerization step, i.e., Gj-Gj-1 at j > 2, is ��� ∙
ln  ���

��!"#�$
% & ��� ∙ ln  "#�∗$"#�$

%, and the free energy change at the initiation step, G2-G1, is ��� ∙
ln  ���

��!"#�$(∗∗��%. 

 

In the steady-state approximation, after passing the barrier state "2" (i.e., at j > 2) we have 
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�

��!"#�$(∗∗�� *
�

��!"#�$
∙ ���
��!"#�$(∗∗��∑  "#�∗$"#�$

%
��0��

��0 .   (S.27) 

Now, because ∑  "#�∗$"#�$
%
��0��

��0 = 
�� "1�∗$"1�$

%
(���

��"1�∗$
"1�$

 ≈ 
"#�$

"#�$�"#�∗$
 ≈ 1 when "2�$ ≫ "2�∗$ (which is true for the 

case examined in Ref. 3, see above), we have 

�
æ�→�→�…

 ≈ 
���4��!"#�$
��!∙��!"#�$(∗∗

.      (S.27a) 

Equation (S.26a) means that æ�→�→0… 5 ��4"2�$�
∗∗�� 6  ��!"#�$

���4��!"#�$
% is the rate of formation of 

the effective nucleus.  

The multiplier  ��!"#�$
���4��!"#�$

% is close to 
��!"#�$
���

 when ��4"2�$ << ���, but when [C1] grows, the 

multiplier grows up to unity, and then (with ��4"2�$ >> ���) remains constant. That is,  

æ�→�→0… 5 ��!
���

��4"2�$�
∗∗

 when "2�$ 8 ���/��4,     (S.28) 

and  
æ�→�→0… 5 ��4"2�$�

∗∗�� when "2�$ : ���/��4.     (S.29) 

As a result, in all conditions the rate has a form "constant×[concentration]some_power", but these 
"constants" and "powers" are different.  
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With large "2�$ : ���/��4, the power is n**-1, which means that the effective nucleus corresponds 
to n** monomers, i.e., just to the n**-monomer activated complex (the free energy maximum over the 
reaction pathway).  

With small "2�$ 8 ���/��4, the power is n**, which means that the effective nucleus is larger by 
one monomer: it corresponds to n**+1 monomers, because it includes the n**-monomer activated 
complex plus one additional, absorbed monomer (deficient in solution).  

The transition from one regime to another occurs in vicinity of the specific free monomer 
concentration  

"2�∗∗$ & ���/��4;          (S.30) 

note that "2�∗∗$ ≫ "2�∗$ because ���, the rate of monomer loss by the unstable nucleus is much greater 
than ���, the rate of monomer loss by a stable fibril. 

The same considerations refer to overcoming the free-energy barriers associated with the secondary 
nucleation (where the rate constant is λ+). 

Recurring to the slope of the ln(t1/2) vs. ln([CΣ]) dependence considered in the main article, we see 
from Eq. (S.22) and the above results that this slope can change from 0.5×n** at low (below [C1**]) 
concentration of monomers to 0.5×(n**-1) at their high (above [C1**]) concentration. The difference in 
slopes for the low and high monomer concentrations (obtained here from analysis of multi-step 
reactions of fibril initiation) is similar to that suggested by Meisl et al.3 from their model of fibril-
catalyzed initiation with saturation of catalytic sites; both of these produce effects which appear 
insufficient for the observed3 deceleration of the amyloid formation rate at very high protein 
concentrations if competition between oligomers and fibrils is not taken into account.  

 
5. Additional electron microscopy images of the growing fibrils and oligomers 

One can find in literature numerous electron microscopy (EM) and atomic force microscopy (AFM) 
images of amyloid fibrils; many of these images present aggregates and oligomers as well (see, e.g., 
Refs. 8-16).  

Figure 4S(A) shows that amorphous aggregates and various oligomers disappear with the growth of 
amyloid fibrils; however, the resolution of these EM images does not allow seeing the monomeric 
structure of these aggregates and oligomers.  

Figure 4S(B), made in a higher resolution, allows seeing monomeric structure of Aβ peptide 
oligomers and shows that they apparently consist of 4-6 monomers.  

The EM studies are performed at protein concentration of about 0.2 mg/ml = 50 µM (for Аβ 
peptides); but, unfortunately, this is a nominal (i.e., initial) concentration only, because during the 
sample drying (which is a necessary step of EM studies) the actual protein concentration increases 
manifold, and the structures that we see may pertain a concentration which is much higher than the 
nominal one, if the oligomer restructuring is faster that drying. 

The AFM studies can be done without drying (see, e.g. Refs. 12, 14), but, unfortunately, the AFM 
resolution does not allow seeing the monomeric structures of oligomers. 
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Figure 4S. (A) Kinetics of amyloid formation by recombinant Аβ40 peptide (50mMTris–HCl, pH7.5, 
25°С, 5%DMSO, [CΣ]Аβ40 = 0.2 mg/ml = 50 µM): Fibrils arise and grow with time, oligomers and 
amorphous aggregates (including those covering the fibrils) gradually disappear. Adapted from Ref. 
15. (B) Additional electron microscopy images of oligomers formed by Aβ42) peptides. Adapted from 
Ref. 16.  
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