Observation of anisotropic growth and compositional

discontinuity in AlGaN electron-blocking layers on GaN

micro-rods

Woo-Young Jung, $^{\dagger,\perp}$ Chan-Min Kwak, $^{\dagger,\perp}$ Jae-Bok Seol, $^{\sharp,\perp}$ Jin Kuen Park, § Chan-Gyung Park †,‡

Young Kyu Jeong",*

[†]Department of Materials Science and Engineering, POSTECH, Pohang 37673, South Korea

[‡]National Institute for Nanomaterials Technology, POSTECH, Pohang 37673, South Korea

§ Department of Chemistry, Hankuk University of Foreign Studies, Yongin 449-791, South Korea

Non-Ferrous Materials Group, KITECH, Gangneung 25440, South Korea

Corresponding Authors

* Dr. Young K. Jeong, Tel: +82-10-9215-0639, E-mail: immrc80@gmail.com

Author Contribution

¹These authors contributed to this work equally.

KEYWORDS: AlGaN layer; electron-blocking layer; layer separation; atom probe

tomography

	m1-plane	m2-plane	m3-plane	m4-plane	m5-plane	m6-plane	Average	Standard Deviation	Coefficient of Variation
Buffer	165.1	170.0	164.5	154.4	147.6	153.2	159.1	7.89	0.0495
1 st Qb	16.8	18.0	17.0	14.4	14.8	14.8	16.0	1.35	0.0844
2 nd Qb	15.8	16.2	15.3	13.9	13.9	14.8	15.0	0.86	0.0576
3 rd Qb	14.8	16.2	14.4	13.5	13.9	13.9	14.4	0.88	0.0607
4 th Qb	31.4	37.7	36.0	36.8	25.2	36.9	34.0	4.45	0.1309
1 st Qw	7.2	7.2	7.6	7.2	7.2	7.1	7.3	0.18	0.0243
2^{nd} Qw	6.5	6.3	6.7	6.7	6.7	6.7	6.6	0.18	0.0269
3 rd Qw	6.1	6.3	6.3	6.3	6.3	6.3	6.3	0.07	0.0113
4 th Qw	6.1	5.8	5.8	5.8	5.8	5.8	5.9	0.10	0.0166
EBL	47.6	51.2	47.2	22.4	9.0	48.1	37.6	15.99	0.4257
p-GaN	202.8	213.1	189.8	214.2	211.4	186.1	202.9	11.24	0.0554
Total	520.2	547.9	510.6	495.6	461.9	493.8	505.0	26.39	5.23

Table. S1. Thickness of each layer on every six m-planes of the micro-rod. Note that EBLs show highest standard deviation (11.99) and coefficient of variation values (0.4257) compared with other layers, indicating their asymmetric growths.

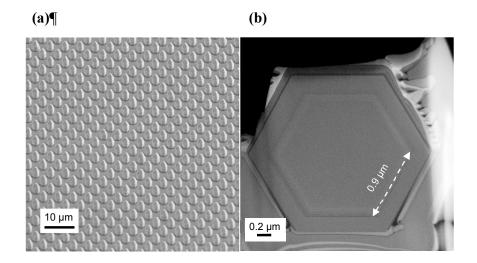


Figure. S1. (a) SEM image of GaN micro-rod LEDs array and (b) cross sectional HAADF-STEM image of the GaN core-shell micro-rod. The length of m-plane ranges in between 0.7 and 1 um.

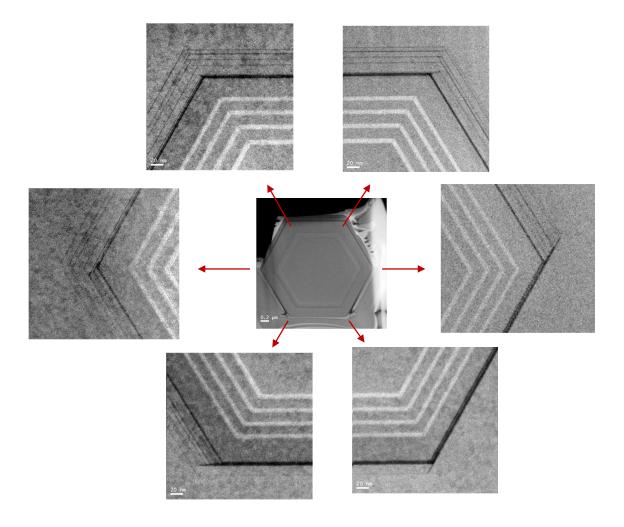


Figure. S2. Cross section HAADF-STEM images acquired at six different m-plane corners of a single micro-rod. The images show the phase-separated AlGaN EBLs that have different thicknesses and lengths on the six m-planes of the GaN micro rod.